MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fovrnda Unicode version

Theorem fovrnda 6180
Description: An operation's value belongs to its codomain. (Contributed by Mario Carneiro, 29-Dec-2016.)
Hypothesis
Ref Expression
fovrnd.1  |-  ( ph  ->  F : ( R  X.  S ) --> C )
Assertion
Ref Expression
fovrnda  |-  ( (
ph  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  e.  C )

Proof of Theorem fovrnda
StepHypRef Expression
1 fovrnd.1 . . 3  |-  ( ph  ->  F : ( R  X.  S ) --> C )
2 fovrn 6179 . . 3  |-  ( ( F : ( R  X.  S ) --> C  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
31, 2syl3an1 1217 . 2  |-  ( (
ph  /\  A  e.  R  /\  B  e.  S
)  ->  ( A F B )  e.  C
)
433expb 1154 1  |-  ( (
ph  /\  ( A  e.  R  /\  B  e.  S ) )  -> 
( A F B )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1721    X. cxp 4839   -->wf 5413  (class class class)co 6044
This theorem is referenced by:  eroprf  6965  yonedalem3  14336  yonedainv  14337  gass  15037  isxmet2d  18314  prdsxmetlem  18355  metideq  24245  sibfof  24611  mamulid  27330  mamurid  27331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pr 4367
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-fv 5425  df-ov 6047
  Copyright terms: Public domain W3C validator