MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fowdom Structured version   Unicode version

Theorem fowdom 7529
Description: An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.)
Assertion
Ref Expression
fowdom  |-  ( ( F  e.  V  /\  F : Y -onto-> X )  ->  X  ~<_*  Y )

Proof of Theorem fowdom
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elex 2956 . 2  |-  ( F  e.  V  ->  F  e.  _V )
2 foeq1 5641 . . . . . 6  |-  ( z  =  F  ->  (
z : Y -onto-> X  <->  F : Y -onto-> X ) )
32spcegv 3029 . . . . 5  |-  ( F  e.  _V  ->  ( F : Y -onto-> X  ->  E. z  z : Y -onto-> X ) )
43imp 419 . . . 4  |-  ( ( F  e.  _V  /\  F : Y -onto-> X )  ->  E. z  z : Y -onto-> X )
54olcd 383 . . 3  |-  ( ( F  e.  _V  /\  F : Y -onto-> X )  ->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) )
6 fof 5645 . . . . 5  |-  ( F : Y -onto-> X  ->  F : Y --> X )
7 dmfex 5618 . . . . 5  |-  ( ( F  e.  _V  /\  F : Y --> X )  ->  Y  e.  _V )
86, 7sylan2 461 . . . 4  |-  ( ( F  e.  _V  /\  F : Y -onto-> X )  ->  Y  e.  _V )
9 brwdom 7525 . . . 4  |-  ( Y  e.  _V  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) )
108, 9syl 16 . . 3  |-  ( ( F  e.  _V  /\  F : Y -onto-> X )  ->  ( X  ~<_*  Y  <->  ( X  =  (/)  \/  E. z  z : Y -onto-> X ) ) )
115, 10mpbird 224 . 2  |-  ( ( F  e.  _V  /\  F : Y -onto-> X )  ->  X  ~<_*  Y )
121, 11sylan 458 1  |-  ( ( F  e.  V  /\  F : Y -onto-> X )  ->  X  ~<_*  Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   _Vcvv 2948   (/)c0 3620   class class class wbr 4204   -->wf 5442   -onto->wfo 5444    ~<_* cwdom 7515
This theorem is referenced by:  wdomref  7530  wdomtr  7533  wdom2d  7538  wdomima2g  7544  harwdom  7548  ixpiunwdom  7549  isf32lem10  8232  fin1a2lem7  8276
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-fun 5448  df-fn 5449  df-f 5450  df-fo 5452  df-wdom 7517
  Copyright terms: Public domain W3C validator