MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpmg Unicode version

Theorem fpmg 6793
Description: A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.)
Assertion
Ref Expression
fpmg  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A --> B )  ->  F  e.  ( B  ^pm  A )
)

Proof of Theorem fpmg
StepHypRef Expression
1 ssid 3197 . . . 4  |-  A  C_  A
2 elpm2r 6788 . . . 4  |-  ( ( ( B  e.  W  /\  A  e.  V
)  /\  ( F : A --> B  /\  A  C_  A ) )  ->  F  e.  ( B  ^pm  A ) )
31, 2mpanr2 665 . . 3  |-  ( ( ( B  e.  W  /\  A  e.  V
)  /\  F : A
--> B )  ->  F  e.  ( B  ^pm  A
) )
433impa 1146 . 2  |-  ( ( B  e.  W  /\  A  e.  V  /\  F : A --> B )  ->  F  e.  ( B  ^pm  A )
)
543com12 1155 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  F : A --> B )  ->  F  e.  ( B  ^pm  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    e. wcel 1684    C_ wss 3152   -->wf 5251  (class class class)co 5858    ^pm cpm 6773
This theorem is referenced by:  fpm  6800  mapsspm  6801  dvnff  19272  dvnply2  19667
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-pm 6775
  Copyright terms: Public domain W3C validator