Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprod Unicode version

Theorem fprod 25256
Description: The value of a product over a nonempty finite set. (Contributed by Scott Fenton, 6-Dec-2017.)
Hypotheses
Ref Expression
fprod.1  |-  ( k  =  ( F `  n )  ->  B  =  C )
fprod.2  |-  ( ph  ->  M  e.  NN )
fprod.3  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
fprod.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fprod.5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
Assertion
Ref Expression
fprod  |-  ( ph  ->  prod_ k  e.  A B  =  (  seq  1 (  x.  ,  G ) `  M
) )
Distinct variable groups:    A, k, n    B, n    C, k   
k, F, n    k, G, n    ph, k    k, M, n    ph, n
Allowed substitution hints:    B( k)    C( n)

Proof of Theorem fprod
Dummy variables  f 
i  j  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-prod 25221 . 2  |-  prod_ k  e.  A B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
2 fvex 5733 . . 3  |-  (  seq  1 (  x.  ,  G ) `  M
)  e.  _V
3 nfcv 2571 . . . . . . . . 9  |-  F/_ j if ( k  e.  A ,  B ,  1 )
4 nfv 1629 . . . . . . . . . 10  |-  F/ k  j  e.  A
5 nfcsb1v 3275 . . . . . . . . . 10  |-  F/_ k [_ j  /  k ]_ B
6 nfcv 2571 . . . . . . . . . 10  |-  F/_ k
1
74, 5, 6nfif 3755 . . . . . . . . 9  |-  F/_ k if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 )
8 eleq1 2495 . . . . . . . . . 10  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
9 csbeq1a 3251 . . . . . . . . . 10  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
10 eqidd 2436 . . . . . . . . . 10  |-  ( k  =  j  ->  1  =  1 )
118, 9, 10ifbieq12d 3753 . . . . . . . . 9  |-  ( k  =  j  ->  if ( k  e.  A ,  B ,  1 )  =  if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 ) )
123, 7, 11cbvmpt 4291 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) )  =  ( j  e.  ZZ  |->  if ( j  e.  A ,  [_ j  /  k ]_ B ,  1 ) )
13 fprod.4 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1413ralrimiva 2781 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
155nfel1 2581 . . . . . . . . . 10  |-  F/ k
[_ j  /  k ]_ B  e.  CC
169eleq1d 2501 . . . . . . . . . 10  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
1715, 16rspc 3038 . . . . . . . . 9  |-  ( j  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ j  /  k ]_ B  e.  CC )
)
1814, 17mpan9 456 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
19 fveq2 5719 . . . . . . . . . . 11  |-  ( n  =  i  ->  (
f `  n )  =  ( f `  i ) )
2019csbeq1d 3249 . . . . . . . . . 10  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B )
21 csbco 3252 . . . . . . . . . 10  |-  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B
2220, 21syl6eqr 2485 . . . . . . . . 9  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B )
2322cbvmptv 4292 . . . . . . . 8  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( i  e.  NN  |->  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B
)
2412, 18, 23prodmo 25251 . . . . . . 7  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
25 fprod.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
26 fprod.3 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
27 f1of 5665 . . . . . . . . . . . 12  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  F :
( 1 ... M
) --> A )
2826, 27syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F : ( 1 ... M ) --> A )
29 ovex 6097 . . . . . . . . . . 11  |-  ( 1 ... M )  e. 
_V
30 fex 5960 . . . . . . . . . . 11  |-  ( ( F : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  _V )  ->  F  e.  _V )
3128, 29, 30sylancl 644 . . . . . . . . . 10  |-  ( ph  ->  F  e.  _V )
32 nnuz 10510 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3325, 32syl6eleq 2525 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
34 fprod.5 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
35 elfznn 11069 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... M )  ->  n  e.  NN )
3635adantl 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  n  e.  NN )
37 fvex 5733 . . . . . . . . . . . . . . . . 17  |-  ( G `
 n )  e. 
_V
3834, 37syl6eqelr 2524 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  C  e.  _V )
39 eqid 2435 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  |->  C )  =  ( n  e.  NN  |->  C )
4039fvmpt2 5803 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  C  e.  _V )  ->  ( ( n  e.  NN  |->  C ) `  n )  =  C )
4136, 38, 40syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  C ) `  n
)  =  C )
4234, 41eqtr4d 2470 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  ( ( n  e.  NN  |->  C ) `
 n ) )
4342ralrimiva 2781 . . . . . . . . . . . . 13  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  =  ( ( n  e.  NN  |->  C ) `  n ) )
44 nffvmpt1 5727 . . . . . . . . . . . . . . 15  |-  F/_ n
( ( n  e.  NN  |->  C ) `  k )
4544nfeq2 2582 . . . . . . . . . . . . . 14  |-  F/ n
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k )
46 fveq2 5719 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
47 fveq2 5719 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
( n  e.  NN  |->  C ) `  n
)  =  ( ( n  e.  NN  |->  C ) `  k ) )
4846, 47eqeq12d 2449 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( G `  n
)  =  ( ( n  e.  NN  |->  C ) `  n )  <-> 
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k ) ) )
4945, 48rspc 3038 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... M )  ->  ( A. n  e.  (
1 ... M ) ( G `  n )  =  ( ( n  e.  NN  |->  C ) `
 n )  -> 
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k ) ) )
5043, 49mpan9 456 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( G `  k )  =  ( ( n  e.  NN  |->  C ) `
 k ) )
5133, 50seqfveq 11335 . . . . . . . . . . 11  |-  ( ph  ->  (  seq  1 (  x.  ,  G ) `
 M )  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  C ) ) `  M ) )
5226, 51jca 519 . . . . . . . . . 10  |-  ( ph  ->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  C ) ) `  M
) ) )
53 f1oeq1 5656 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f : ( 1 ... M ) -1-1-onto-> A  <->  F :
( 1 ... M
)
-1-1-onto-> A ) )
54 fveq1 5718 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  F  ->  (
f `  n )  =  ( F `  n ) )
5554csbeq1d 3249 . . . . . . . . . . . . . . . . 17  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( F `  n )  /  k ]_ B )
56 fvex 5733 . . . . . . . . . . . . . . . . . 18  |-  ( F `
 n )  e. 
_V
57 nfcv 2571 . . . . . . . . . . . . . . . . . 18  |-  F/_ k C
58 fprod.1 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( F `  n )  ->  B  =  C )
5956, 57, 58csbief 3284 . . . . . . . . . . . . . . . . 17  |-  [_ ( F `  n )  /  k ]_ B  =  C
6055, 59syl6eq 2483 . . . . . . . . . . . . . . . 16  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  C )
6160mpteq2dv 4288 . . . . . . . . . . . . . . 15  |-  ( f  =  F  ->  (
n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )  =  ( n  e.  NN  |->  C ) )
6261seqeq3d 11319 . . . . . . . . . . . . . 14  |-  ( f  =  F  ->  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )  =  seq  1 (  x.  ,  ( n  e.  NN  |->  C ) ) )
6362fveq1d 5721 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M )  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  C ) ) `
 M ) )
6463eqeq2d 2446 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
(  seq  1 (  x.  ,  G ) `
 M )  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  M
)  <->  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  C ) ) `  M
) ) )
6553, 64anbi12d 692 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) )  <->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1 (  x.  ,  G ) `  M
)  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  C ) ) `  M ) ) ) )
6665spcegv 3029 . . . . . . . . . 10  |-  ( F  e.  _V  ->  (
( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  C ) ) `  M
) )  ->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
6731, 52, 66sylc 58 . . . . . . . . 9  |-  ( ph  ->  E. f ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1 (  x.  ,  G ) `  M
)  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )
68 oveq2 6080 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
1 ... m )  =  ( 1 ... M
) )
69 f1oeq2 5657 . . . . . . . . . . . . 13  |-  ( ( 1 ... m )  =  ( 1 ... M )  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
7068, 69syl 16 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
71 fveq2 5719 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  M ) )
7271eqeq2d 2446 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
(  seq  1 (  x.  ,  G ) `
 M )  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
)  <->  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )
7370, 72anbi12d 692 . . . . . . . . . . 11  |-  ( m  =  M  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1 (  x.  ,  G ) `  M
)  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
7473exbidv 1636 . . . . . . . . . 10  |-  ( m  =  M  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
7574rspcev 3044 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  E. f ( f : ( 1 ... M
)
-1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
7625, 67, 75syl2anc 643 . . . . . . . 8  |-  ( ph  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
7776olcd 383 . . . . . . 7  |-  ( ph  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq  1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
78 breq2 4208 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq  1
(  x.  ,  G
) `  M )  ->  (  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x  <->  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq  1 (  x.  ,  G ) `  M
) ) )
79783anbi3d 1260 . . . . . . . . . . . . 13  |-  ( x  =  (  seq  1
(  x.  ,  G
) `  M )  ->  ( ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <-> 
( A  C_  ( ZZ>=
`  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq  1 (  x.  ,  G ) `  M
) ) ) )
8079rexbidv 2718 . . . . . . . . . . . 12  |-  ( x  =  (  seq  1
(  x.  ,  G
) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq  1 (  x.  ,  G ) `  M
) ) ) )
81 eqeq1 2441 . . . . . . . . . . . . . . 15  |-  ( x  =  (  seq  1
(  x.  ,  G
) `  M )  ->  ( x  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )  <->  (  seq  1 (  x.  ,  G ) `  M
)  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
8281anbi2d 685 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq  1
(  x.  ,  G
) `  M )  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  x.  ,  G ) `  M
)  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
8382exbidv 1636 . . . . . . . . . . . . 13  |-  ( x  =  (  seq  1
(  x.  ,  G
) `  M )  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
8483rexbidv 2718 . . . . . . . . . . . 12  |-  ( x  =  (  seq  1
(  x.  ,  G
) `  M )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  x.  ,  G ) `  M )  =  (  seq  1 (  x.  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
8580, 84orbi12d 691 . . . . . . . . . . 11  |-  ( x  =  (  seq  1
(  x.  ,  G
) `  M )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq  1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )
8685moi2 3107 . . . . . . . . . 10  |-  ( ( ( (  seq  1
(  x.  ,  G
) `  M )  e.  _V  /\  E* x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq  1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq  1
(  x.  ,  G
) `  M )
)
872, 86mpanl1 662 . . . . . . . . 9  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq  1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq  1
(  x.  ,  G
) `  M )
)
8887ancom2s 778 . . . . . . . 8  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq  1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq  1
(  x.  ,  G
) `  M )
)
8988expr 599 . . . . . . 7  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  E. n  e.  ( ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  (  seq  1 (  x.  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  x.  ,  G
) `  M )  =  (  seq  1
(  x.  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  ->  x  =  (  seq  1 (  x.  ,  G ) `  M ) ) )
9024, 77, 89syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  ->  x  =  (  seq  1 (  x.  ,  G ) `  M ) ) )
9177, 85syl5ibrcom 214 . . . . . 6  |-  ( ph  ->  ( x  =  (  seq  1 (  x.  ,  G ) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )
9290, 91impbid 184 . . . . 5  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
x  =  (  seq  1 (  x.  ,  G ) `  M
) ) )
9392adantr 452 . . . 4  |-  ( (
ph  /\  (  seq  1 (  x.  ,  G ) `  M
)  e.  _V )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  (
ZZ>= `  m ) E. y ( y  =/=  0  /\  seq  n
(  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  <-> 
x  =  (  seq  1 (  x.  ,  G ) `  M
) ) )
9493iota5 5429 . . 3  |-  ( (
ph  /\  (  seq  1 (  x.  ,  G ) `  M
)  e.  _V )  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  (  seq  1 (  x.  ,  G ) `  M
) )
952, 94mpan2 653 . 2  |-  ( ph  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  E. n  e.  ( ZZ>= `  m ) E. y
( y  =/=  0  /\  seq  n (  x.  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  y )  /\  seq  m (  x.  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  1 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  x.  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  (  seq  1 (  x.  ,  G ) `  M
) )
961, 95syl5eq 2479 1  |-  ( ph  ->  prod_ k  e.  A B  =  (  seq  1 (  x.  ,  G ) `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936   E.wex 1550    = wceq 1652    e. wcel 1725   E*wmo 2281    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948   [_csb 3243    C_ wss 3312   ifcif 3731   class class class wbr 4204    e. cmpt 4258   iotacio 5407   -->wf 5441   -1-1-onto->wf1o 5444   ` cfv 5445  (class class class)co 6072   CCcc 8977   0cc0 8979   1c1 8980    x. cmul 8984   NNcn 9989   ZZcz 10271   ZZ>=cuz 10477   ...cfz 11032    seq cseq 11311    ~~> cli 12266   prod_cprod 25220
This theorem is referenced by:  prod1  25259  fprodf1o  25261  fprodser  25264  fprodcl2lem  25265  fprodmul  25273  fproddiv  25274  prodsn  25275  fprodconst  25291  fprodn0  25292
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-oadd 6719  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-sup 7437  df-oi 7468  df-card 7815  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-rp 10602  df-fz 11033  df-fzo 11124  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-prod 25221
  Copyright terms: Public domain W3C validator