Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodp1s Structured version   Unicode version

Theorem fprodp1s 25294
Description: Multiply in the last term in a finite product. (Contributed by Scott Fenton, 27-Dec-2017.)
Hypotheses
Ref Expression
fprodp1s.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fprodp1s.2  |-  ( (
ph  /\  k  e.  ( M ... ( N  +  1 ) ) )  ->  A  e.  CC )
Assertion
Ref Expression
fprodp1s  |-  ( ph  ->  prod_ k  e.  ( M ... ( N  +  1 ) ) A  =  ( prod_
k  e.  ( M ... N ) A  x.  [_ ( N  +  1 )  / 
k ]_ A ) )
Distinct variable groups:    ph, k    k, M    k, N
Allowed substitution hint:    A( k)

Proof of Theorem fprodp1s
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 fprodp1s.1 . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 fprodp1s.2 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... ( N  +  1 ) ) )  ->  A  e.  CC )
32ralrimiva 2789 . . . 4  |-  ( ph  ->  A. k  e.  ( M ... ( N  +  1 ) ) A  e.  CC )
4 nfcsb1v 3283 . . . . . 6  |-  F/_ k [_ m  /  k ]_ A
54nfel1 2582 . . . . 5  |-  F/ k
[_ m  /  k ]_ A  e.  CC
6 csbeq1a 3259 . . . . . 6  |-  ( k  =  m  ->  A  =  [_ m  /  k ]_ A )
76eleq1d 2502 . . . . 5  |-  ( k  =  m  ->  ( A  e.  CC  <->  [_ m  / 
k ]_ A  e.  CC ) )
85, 7rspc 3046 . . . 4  |-  ( m  e.  ( M ... ( N  +  1
) )  ->  ( A. k  e.  ( M ... ( N  + 
1 ) ) A  e.  CC  ->  [_ m  /  k ]_ A  e.  CC ) )
93, 8mpan9 456 . . 3  |-  ( (
ph  /\  m  e.  ( M ... ( N  +  1 ) ) )  ->  [_ m  / 
k ]_ A  e.  CC )
10 csbeq1 3254 . . 3  |-  ( m  =  ( N  + 
1 )  ->  [_ m  /  k ]_ A  =  [_ ( N  + 
1 )  /  k ]_ A )
111, 9, 10fprodp1 25292 . 2  |-  ( ph  ->  prod_ m  e.  ( M ... ( N  +  1 ) )
[_ m  /  k ]_ A  =  ( prod_ m  e.  ( M ... N ) [_ m  /  k ]_ A  x.  [_ ( N  + 
1 )  /  k ]_ A ) )
12 nfcv 2572 . . 3  |-  F/_ m A
1312, 4, 6cbvprodi 25243 . 2  |-  prod_ k  e.  ( M ... ( N  +  1 ) ) A  =  prod_ m  e.  ( M ... ( N  +  1
) ) [_ m  /  k ]_ A
1412, 4, 6cbvprodi 25243 . . 3  |-  prod_ k  e.  ( M ... N
) A  =  prod_ m  e.  ( M ... N ) [_ m  /  k ]_ A
1514oveq1i 6091 . 2  |-  ( prod_
k  e.  ( M ... N ) A  x.  [_ ( N  +  1 )  / 
k ]_ A )  =  ( prod_ m  e.  ( M ... N )
[_ m  /  k ]_ A  x.  [_ ( N  +  1 )  /  k ]_ A
)
1611, 13, 153eqtr4g 2493 1  |-  ( ph  ->  prod_ k  e.  ( M ... ( N  +  1 ) ) A  =  ( prod_
k  e.  ( M ... N ) A  x.  [_ ( N  +  1 )  / 
k ]_ A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   [_csb 3251   ` cfv 5454  (class class class)co 6081   CCcc 8988   1c1 8991    + caddc 8993    x. cmul 8995   ZZ>=cuz 10488   ...cfz 11043   prod_cprod 25231
This theorem is referenced by:  fprodabs  25297
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-fzo 11136  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-prod 25232
  Copyright terms: Public domain W3C validator