MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwipodrs Unicode version

Theorem fpwipodrs 14510
Description: The finite subsets of any set are directed by inclusion. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Assertion
Ref Expression
fpwipodrs  |-  ( A  e.  V  ->  (toInc `  ( ~P A  i^i  Fin ) )  e. Dirset )

Proof of Theorem fpwipodrs
Dummy variables  z  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4317 . . 3  |-  ( A  e.  V  ->  ~P A  e.  _V )
2 inex1g 4280 . . 3  |-  ( ~P A  e.  _V  ->  ( ~P A  i^i  Fin )  e.  _V )
31, 2syl 16 . 2  |-  ( A  e.  V  ->  ( ~P A  i^i  Fin )  e.  _V )
4 0elpw 4303 . . . 4  |-  (/)  e.  ~P A
5 0fin 7265 . . . 4  |-  (/)  e.  Fin
6 elin 3466 . . . 4  |-  ( (/)  e.  ( ~P A  i^i  Fin )  <->  ( (/)  e.  ~P A  /\  (/)  e.  Fin )
)
74, 5, 6mpbir2an 887 . . 3  |-  (/)  e.  ( ~P A  i^i  Fin )
8 ne0i 3570 . . 3  |-  ( (/)  e.  ( ~P A  i^i  Fin )  ->  ( ~P A  i^i  Fin )  =/=  (/) )
97, 8mp1i 12 . 2  |-  ( A  e.  V  ->  ( ~P A  i^i  Fin )  =/=  (/) )
10 elin 3466 . . . . . 6  |-  ( x  e.  ( ~P A  i^i  Fin )  <->  ( x  e.  ~P A  /\  x  e.  Fin ) )
11 elin 3466 . . . . . 6  |-  ( y  e.  ( ~P A  i^i  Fin )  <->  ( y  e.  ~P A  /\  y  e.  Fin ) )
12 elpwi 3743 . . . . . . . . . 10  |-  ( x  e.  ~P A  ->  x  C_  A )
13 elpwi 3743 . . . . . . . . . 10  |-  ( y  e.  ~P A  -> 
y  C_  A )
1412, 13anim12i 550 . . . . . . . . 9  |-  ( ( x  e.  ~P A  /\  y  e.  ~P A )  ->  (
x  C_  A  /\  y  C_  A ) )
15 unss 3457 . . . . . . . . . 10  |-  ( ( x  C_  A  /\  y  C_  A )  <->  ( x  u.  y )  C_  A
)
16 vex 2895 . . . . . . . . . . . 12  |-  x  e. 
_V
17 vex 2895 . . . . . . . . . . . 12  |-  y  e. 
_V
1816, 17unex 4640 . . . . . . . . . . 11  |-  ( x  u.  y )  e. 
_V
1918elpw 3741 . . . . . . . . . 10  |-  ( ( x  u.  y )  e.  ~P A  <->  ( x  u.  y )  C_  A
)
2015, 19bitr4i 244 . . . . . . . . 9  |-  ( ( x  C_  A  /\  y  C_  A )  <->  ( x  u.  y )  e.  ~P A )
2114, 20sylib 189 . . . . . . . 8  |-  ( ( x  e.  ~P A  /\  y  e.  ~P A )  ->  (
x  u.  y )  e.  ~P A )
2221ad2ant2r 728 . . . . . . 7  |-  ( ( ( x  e.  ~P A  /\  x  e.  Fin )  /\  ( y  e. 
~P A  /\  y  e.  Fin ) )  -> 
( x  u.  y
)  e.  ~P A
)
23 unfi 7303 . . . . . . . 8  |-  ( ( x  e.  Fin  /\  y  e.  Fin )  ->  ( x  u.  y
)  e.  Fin )
2423ad2ant2l 727 . . . . . . 7  |-  ( ( ( x  e.  ~P A  /\  x  e.  Fin )  /\  ( y  e. 
~P A  /\  y  e.  Fin ) )  -> 
( x  u.  y
)  e.  Fin )
25 elin 3466 . . . . . . 7  |-  ( ( x  u.  y )  e.  ( ~P A  i^i  Fin )  <->  ( (
x  u.  y )  e.  ~P A  /\  ( x  u.  y
)  e.  Fin )
)
2622, 24, 25sylanbrc 646 . . . . . 6  |-  ( ( ( x  e.  ~P A  /\  x  e.  Fin )  /\  ( y  e. 
~P A  /\  y  e.  Fin ) )  -> 
( x  u.  y
)  e.  ( ~P A  i^i  Fin )
)
2710, 11, 26syl2anb 466 . . . . 5  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  e.  ( ~P A  i^i  Fin )
)  ->  ( x  u.  y )  e.  ( ~P A  i^i  Fin ) )
28 ssid 3303 . . . . 5  |-  ( x  u.  y )  C_  ( x  u.  y
)
29 sseq2 3306 . . . . . 6  |-  ( z  =  ( x  u.  y )  ->  (
( x  u.  y
)  C_  z  <->  ( x  u.  y )  C_  (
x  u.  y ) ) )
3029rspcev 2988 . . . . 5  |-  ( ( ( x  u.  y
)  e.  ( ~P A  i^i  Fin )  /\  ( x  u.  y
)  C_  ( x  u.  y ) )  ->  E. z  e.  ( ~P A  i^i  Fin )
( x  u.  y
)  C_  z )
3127, 28, 30sylancl 644 . . . 4  |-  ( ( x  e.  ( ~P A  i^i  Fin )  /\  y  e.  ( ~P A  i^i  Fin )
)  ->  E. z  e.  ( ~P A  i^i  Fin ) ( x  u.  y )  C_  z
)
3231rgen2a 2708 . . 3  |-  A. x  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) E. z  e.  ( ~P A  i^i  Fin ) ( x  u.  y )  C_  z
3332a1i 11 . 2  |-  ( A  e.  V  ->  A. x  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) E. z  e.  ( ~P A  i^i  Fin ) ( x  u.  y )  C_  z
)
34 isipodrs 14507 . 2  |-  ( (toInc `  ( ~P A  i^i  Fin ) )  e. Dirset  <->  ( ( ~P A  i^i  Fin )  e.  _V  /\  ( ~P A  i^i  Fin )  =/=  (/)  /\  A. x  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) E. z  e.  ( ~P A  i^i  Fin ) ( x  u.  y )  C_  z
) )
353, 9, 33, 34syl3anbrc 1138 1  |-  ( A  e.  V  ->  (toInc `  ( ~P A  i^i  Fin ) )  e. Dirset )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1717    =/= wne 2543   A.wral 2642   E.wrex 2643   _Vcvv 2892    u. cun 3254    i^i cin 3255    C_ wss 3256   (/)c0 3564   ~Pcpw 3735   ` cfv 5387   Fincfn 7038  Dirsetcdrs 14304  toInccipo 14497
This theorem is referenced by:  isacs5lem  14515  isnacs3  26448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-riota 6478  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-fin 7042  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-3 9984  df-4 9985  df-5 9986  df-6 9987  df-7 9988  df-8 9989  df-9 9990  df-10 9991  df-n0 10147  df-z 10208  df-dec 10308  df-uz 10414  df-fz 10969  df-struct 13391  df-ndx 13392  df-slot 13393  df-base 13394  df-tset 13468  df-ple 13469  df-ocomp 13470  df-preset 14305  df-drs 14306  df-poset 14323  df-ipo 14498
  Copyright terms: Public domain W3C validator