MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe Unicode version

Theorem fpwwe 8268
Description: Given any function  F from the powerset of  A to  A, canth2 7014 gives that the function is not injective, but we can say rather more than that. There is a unique well-ordered subset  <. X , 
( W `  X
) >. which "agrees" with  F in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a 7657. Theorem 1.1 of [KanamoriPincus] p. 415. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
fpwwe.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
fpwwe.2  |-  ( ph  ->  A  e.  _V )
fpwwe.3  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  ( F `  x )  e.  A )
fpwwe.4  |-  X  = 
U. dom  W
Assertion
Ref Expression
fpwwe  |-  ( ph  ->  ( ( Y W R  /\  ( F `
 Y )  e.  Y )  <->  ( Y  =  X  /\  R  =  ( W `  X
) ) ) )
Distinct variable groups:    x, r, A    y, r, F, x    ph, r, x, y    R, r, x, y    X, r, x, y    Y, r, x, y    W, r, x, y
Allowed substitution hint:    A( y)

Proof of Theorem fpwwe
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 df-ov 5861 . . . . . 6  |-  ( Y ( F  o.  1st ) R )  =  ( ( F  o.  1st ) `  <. Y ,  R >. )
2 fo1st 6139 . . . . . . . 8  |-  1st : _V -onto-> _V
3 fofn 5453 . . . . . . . 8  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
42, 3ax-mp 8 . . . . . . 7  |-  1st  Fn  _V
5 opex 4237 . . . . . . 7  |-  <. Y ,  R >.  e.  _V
6 fvco2 5594 . . . . . . 7  |-  ( ( 1st  Fn  _V  /\  <. Y ,  R >.  e. 
_V )  ->  (
( F  o.  1st ) `  <. Y ,  R >. )  =  ( F `  ( 1st `  <. Y ,  R >. ) ) )
74, 5, 6mp2an 653 . . . . . 6  |-  ( ( F  o.  1st ) `  <. Y ,  R >. )  =  ( F `
 ( 1st `  <. Y ,  R >. )
)
81, 7eqtri 2303 . . . . 5  |-  ( Y ( F  o.  1st ) R )  =  ( F `  ( 1st `  <. Y ,  R >. ) )
9 fpwwe.1 . . . . . . . . 9  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
109relopabi 4811 . . . . . . . 8  |-  Rel  W
11 brrelex12 4726 . . . . . . . 8  |-  ( ( Rel  W  /\  Y W R )  ->  ( Y  e.  _V  /\  R  e.  _V ) )
1210, 11mpan 651 . . . . . . 7  |-  ( Y W R  ->  ( Y  e.  _V  /\  R  e.  _V ) )
13 op1stg 6132 . . . . . . 7  |-  ( ( Y  e.  _V  /\  R  e.  _V )  ->  ( 1st `  <. Y ,  R >. )  =  Y )
1412, 13syl 15 . . . . . 6  |-  ( Y W R  ->  ( 1st `  <. Y ,  R >. )  =  Y )
1514fveq2d 5529 . . . . 5  |-  ( Y W R  ->  ( F `  ( 1st ` 
<. Y ,  R >. ) )  =  ( F `
 Y ) )
168, 15syl5eq 2327 . . . 4  |-  ( Y W R  ->  ( Y ( F  o.  1st ) R )  =  ( F `  Y
) )
1716eleq1d 2349 . . 3  |-  ( Y W R  ->  (
( Y ( F  o.  1st ) R )  e.  Y  <->  ( F `  Y )  e.  Y
) )
1817pm5.32i 618 . 2  |-  ( ( Y W R  /\  ( Y ( F  o.  1st ) R )  e.  Y )  <->  ( Y W R  /\  ( F `  Y )  e.  Y ) )
19 vex 2791 . . . . . . . . . 10  |-  r  e. 
_V
20 cnvexg 5208 . . . . . . . . . 10  |-  ( r  e.  _V  ->  `' r  e.  _V )
21 imaexg 5026 . . . . . . . . . 10  |-  ( `' r  e.  _V  ->  ( `' r " {
y } )  e. 
_V )
2219, 20, 21mp2b 9 . . . . . . . . 9  |-  ( `' r " { y } )  e.  _V
23 vex 2791 . . . . . . . . . . . 12  |-  u  e. 
_V
2419inex1 4155 . . . . . . . . . . . 12  |-  ( r  i^i  ( u  X.  u ) )  e. 
_V
2523, 24algrflem 6224 . . . . . . . . . . 11  |-  ( u ( F  o.  1st ) ( r  i^i  ( u  X.  u
) ) )  =  ( F `  u
)
26 fveq2 5525 . . . . . . . . . . 11  |-  ( u  =  ( `' r
" { y } )  ->  ( F `  u )  =  ( F `  ( `' r " { y } ) ) )
2725, 26syl5eq 2327 . . . . . . . . . 10  |-  ( u  =  ( `' r
" { y } )  ->  ( u
( F  o.  1st ) ( r  i^i  ( u  X.  u
) ) )  =  ( F `  ( `' r " {
y } ) ) )
2827eqeq1d 2291 . . . . . . . . 9  |-  ( u  =  ( `' r
" { y } )  ->  ( (
u ( F  o.  1st ) ( r  i^i  ( u  X.  u
) ) )  =  y  <->  ( F `  ( `' r " {
y } ) )  =  y ) )
2922, 28sbcie 3025 . . . . . . . 8  |-  ( [. ( `' r " {
y } )  /  u ]. ( u ( F  o.  1st )
( r  i^i  (
u  X.  u ) ) )  =  y  <-> 
( F `  ( `' r " {
y } ) )  =  y )
3029ralbii 2567 . . . . . . 7  |-  ( A. y  e.  x  [. ( `' r " {
y } )  /  u ]. ( u ( F  o.  1st )
( r  i^i  (
u  X.  u ) ) )  =  y  <->  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y )
3130anbi2i 675 . . . . . 6  |-  ( ( r  We  x  /\  A. y  e.  x  [. ( `' r " {
y } )  /  u ]. ( u ( F  o.  1st )
( r  i^i  (
u  X.  u ) ) )  =  y )  <->  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) )
3231anbi2i 675 . . . . 5  |-  ( ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u ( F  o.  1st ) ( r  i^i  ( u  X.  u ) ) )  =  y ) )  <->  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) )
3332opabbii 4083 . . . 4  |-  { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u ( F  o.  1st ) ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }  =  { <. x ,  r >.  |  ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
349, 33eqtr4i 2306 . . 3  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u ( F  o.  1st ) ( r  i^i  ( u  X.  u
) ) )  =  y ) ) }
35 fpwwe.2 . . 3  |-  ( ph  ->  A  e.  _V )
36 vex 2791 . . . . 5  |-  x  e. 
_V
3736, 19algrflem 6224 . . . 4  |-  ( x ( F  o.  1st ) r )  =  ( F `  x
)
38 simp1 955 . . . . . . 7  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  C_  A )
3936elpw 3631 . . . . . . 7  |-  ( x  e.  ~P A  <->  x  C_  A
)
4038, 39sylibr 203 . . . . . 6  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  e.  ~P A )
41 19.8a 1718 . . . . . . . 8  |-  ( r  We  x  ->  E. r 
r  We  x )
42413ad2ant3 978 . . . . . . 7  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  E. r 
r  We  x )
43 ween 7662 . . . . . . 7  |-  ( x  e.  dom  card  <->  E. r 
r  We  x )
4442, 43sylibr 203 . . . . . 6  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  e.  dom  card )
45 elin 3358 . . . . . 6  |-  ( x  e.  ( ~P A  i^i  dom  card )  <->  ( x  e.  ~P A  /\  x  e.  dom  card ) )
4640, 44, 45sylanbrc 645 . . . . 5  |-  ( ( x  C_  A  /\  r  C_  ( x  X.  x )  /\  r  We  x )  ->  x  e.  ( ~P A  i^i  dom 
card ) )
47 fpwwe.3 . . . . 5  |-  ( (
ph  /\  x  e.  ( ~P A  i^i  dom  card ) )  ->  ( F `  x )  e.  A )
4846, 47sylan2 460 . . . 4  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( F `  x
)  e.  A )
4937, 48syl5eqel 2367 . . 3  |-  ( (
ph  /\  ( x  C_  A  /\  r  C_  ( x  X.  x
)  /\  r  We  x ) )  -> 
( x ( F  o.  1st ) r )  e.  A )
50 fpwwe.4 . . 3  |-  X  = 
U. dom  W
5134, 35, 49, 50fpwwe2 8265 . 2  |-  ( ph  ->  ( ( Y W R  /\  ( Y ( F  o.  1st ) R )  e.  Y
)  <->  ( Y  =  X  /\  R  =  ( W `  X
) ) ) )
5218, 51syl5bbr 250 1  |-  ( ph  ->  ( ( Y W R  /\  ( F `
 Y )  e.  Y )  <->  ( Y  =  X  /\  R  =  ( W `  X
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   [.wsbc 2991    i^i cin 3151    C_ wss 3152   ~Pcpw 3625   {csn 3640   <.cop 3643   U.cuni 3827   class class class wbr 4023   {copab 4076    We wwe 4351    X. cxp 4687   `'ccnv 4688   dom cdm 4689   "cima 4692    o. ccom 4693   Rel wrel 4694    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255  (class class class)co 5858   1stc1st 6120   cardccrd 7568
This theorem is referenced by:  canth4  8269  canthnumlem  8270  canthp1lem2  8275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-1st 6122  df-riota 6304  df-recs 6388  df-en 6864  df-oi 7225  df-card 7572
  Copyright terms: Public domain W3C validator