MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem1 Structured version   Unicode version

Theorem fpwwe2lem1 8508
Description: Lemma for fpwwe2 8520. (Contributed by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
fpwwe2.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
Assertion
Ref Expression
fpwwe2lem1  |-  W  C_  ( ~P A  X.  ~P ( A  X.  A
) )
Distinct variable groups:    y, u, r, x, F    A, r, x    W, r, u, x, y
Allowed substitution hints:    A( y, u)

Proof of Theorem fpwwe2lem1
StepHypRef Expression
1 simpll 732 . . . . 5  |-  ( ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y ) )  ->  x  C_  A
)
2 vex 2961 . . . . . 6  |-  x  e. 
_V
32elpw 3807 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
41, 3sylibr 205 . . . 4  |-  ( ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y ) )  ->  x  e.  ~P A )
5 simplr 733 . . . . . 6  |-  ( ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y ) )  ->  r  C_  ( x  X.  x
) )
6 xpss12 4983 . . . . . . 7  |-  ( ( x  C_  A  /\  x  C_  A )  -> 
( x  X.  x
)  C_  ( A  X.  A ) )
71, 1, 6syl2anc 644 . . . . . 6  |-  ( ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y ) )  ->  ( x  X.  x )  C_  ( A  X.  A ) )
85, 7sstrd 3360 . . . . 5  |-  ( ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y ) )  ->  r  C_  ( A  X.  A
) )
9 vex 2961 . . . . . 6  |-  r  e. 
_V
109elpw 3807 . . . . 5  |-  ( r  e.  ~P ( A  X.  A )  <->  r  C_  ( A  X.  A
) )
118, 10sylibr 205 . . . 4  |-  ( ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y ) )  ->  r  e.  ~P ( A  X.  A
) )
124, 11jca 520 . . 3  |-  ( ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y ) )  ->  ( x  e.  ~P A  /\  r  e.  ~P ( A  X.  A ) ) )
1312ssopab2i 4484 . 2  |-  { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. ( u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }  C_  { <. x ,  r >.  |  ( x  e.  ~P A  /\  r  e.  ~P ( A  X.  A
) ) }
14 fpwwe2.1 . 2  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
15 df-xp 4886 . 2  |-  ( ~P A  X.  ~P ( A  X.  A ) )  =  { <. x ,  r >.  |  ( x  e.  ~P A  /\  r  e.  ~P ( A  X.  A
) ) }
1613, 14, 153sstr4i 3389 1  |-  W  C_  ( ~P A  X.  ~P ( A  X.  A
) )
Colors of variables: wff set class
Syntax hints:    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   [.wsbc 3163    i^i cin 3321    C_ wss 3322   ~Pcpw 3801   {csn 3816   {copab 4267    We wwe 4542    X. cxp 4878   `'ccnv 4879   "cima 4883  (class class class)co 6083
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-in 3329  df-ss 3336  df-pw 3803  df-opab 4269  df-xp 4886
  Copyright terms: Public domain W3C validator