MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwe2lem3 Structured version   Unicode version

Theorem fpwwe2lem3 8508
Description: Lemma for fpwwe2 8518. (Contributed by Mario Carneiro, 19-May-2015.)
Hypotheses
Ref Expression
fpwwe2.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
fpwwe2.2  |-  ( ph  ->  A  e.  _V )
fpwwe2lem4.4  |-  ( ph  ->  X W R )
Assertion
Ref Expression
fpwwe2lem3  |-  ( (
ph  /\  B  e.  X )  ->  (
( `' R " { B } ) F ( R  i^i  (
( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B )
Distinct variable groups:    y, u, B    u, r, x, y, F    X, r, u, x, y    ph, r, u, x, y    A, r, x    R, r, u, x, y    W, r, u, x, y
Allowed substitution hints:    A( y, u)    B( x, r)

Proof of Theorem fpwwe2lem3
StepHypRef Expression
1 fpwwe2lem4.4 . . . . . 6  |-  ( ph  ->  X W R )
2 fpwwe2.1 . . . . . . 7  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  [. ( `' r " { y } )  /  u ]. (
u F ( r  i^i  ( u  X.  u ) ) )  =  y ) ) }
3 fpwwe2.2 . . . . . . 7  |-  ( ph  ->  A  e.  _V )
42, 3fpwwe2lem2 8507 . . . . . 6  |-  ( ph  ->  ( X W R  <-> 
( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) ) )
51, 4mpbid 202 . . . . 5  |-  ( ph  ->  ( ( X  C_  A  /\  R  C_  ( X  X.  X ) )  /\  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  y ) ) )
65simprd 450 . . . 4  |-  ( ph  ->  ( R  We  X  /\  A. y  e.  X  [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y ) )
76simprd 450 . . 3  |-  ( ph  ->  A. y  e.  X  [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y )
8 eqeq2 2445 . . . . . 6  |-  ( y  =  B  ->  (
( u F ( R  i^i  ( u  X.  u ) ) )  =  y  <->  ( u F ( R  i^i  ( u  X.  u
) ) )  =  B ) )
98sbcbidv 3215 . . . . 5  |-  ( y  =  B  ->  ( [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y  <->  [. ( `' R " { y } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B ) )
10 sneq 3825 . . . . . . 7  |-  ( y  =  B  ->  { y }  =  { B } )
1110imaeq2d 5203 . . . . . 6  |-  ( y  =  B  ->  ( `' R " { y } )  =  ( `' R " { B } ) )
12 dfsbcq 3163 . . . . . 6  |-  ( ( `' R " { y } )  =  ( `' R " { B } )  ->  ( [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  B  <->  [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B ) )
1311, 12syl 16 . . . . 5  |-  ( y  =  B  ->  ( [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  B  <->  [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B ) )
149, 13bitrd 245 . . . 4  |-  ( y  =  B  ->  ( [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y  <->  [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B ) )
1514rspccva 3051 . . 3  |-  ( ( A. y  e.  X  [. ( `' R " { y } )  /  u ]. (
u F ( R  i^i  ( u  X.  u ) ) )  =  y  /\  B  e.  X )  ->  [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B )
167, 15sylan 458 . 2  |-  ( (
ph  /\  B  e.  X )  ->  [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B )
17 cnvimass 5224 . . . . 5  |-  ( `' R " { B } )  C_  dom  R
182relopabi 5000 . . . . . . 7  |-  Rel  W
1918brrelex2i 4919 . . . . . 6  |-  ( X W R  ->  R  e.  _V )
20 dmexg 5130 . . . . . 6  |-  ( R  e.  _V  ->  dom  R  e.  _V )
211, 19, 203syl 19 . . . . 5  |-  ( ph  ->  dom  R  e.  _V )
22 ssexg 4349 . . . . 5  |-  ( ( ( `' R " { B } )  C_  dom  R  /\  dom  R  e.  _V )  ->  ( `' R " { B } )  e.  _V )
2317, 21, 22sylancr 645 . . . 4  |-  ( ph  ->  ( `' R " { B } )  e. 
_V )
24 id 20 . . . . . . 7  |-  ( u  =  ( `' R " { B } )  ->  u  =  ( `' R " { B } ) )
2524, 24xpeq12d 4903 . . . . . . . 8  |-  ( u  =  ( `' R " { B } )  ->  ( u  X.  u )  =  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) )
2625ineq2d 3542 . . . . . . 7  |-  ( u  =  ( `' R " { B } )  ->  ( R  i^i  ( u  X.  u
) )  =  ( R  i^i  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) ) )
2724, 26oveq12d 6099 . . . . . 6  |-  ( u  =  ( `' R " { B } )  ->  ( u F ( R  i^i  (
u  X.  u ) ) )  =  ( ( `' R " { B } ) F ( R  i^i  (
( `' R " { B } )  X.  ( `' R " { B } ) ) ) ) )
2827eqeq1d 2444 . . . . 5  |-  ( u  =  ( `' R " { B } )  ->  ( ( u F ( R  i^i  ( u  X.  u
) ) )  =  B  <->  ( ( `' R " { B } ) F ( R  i^i  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B ) )
2928sbcieg 3193 . . . 4  |-  ( ( `' R " { B } )  e.  _V  ->  ( [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B  <->  ( ( `' R " { B } ) F ( R  i^i  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B ) )
3023, 29syl 16 . . 3  |-  ( ph  ->  ( [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  ( u  X.  u ) ) )  =  B  <->  ( ( `' R " { B } ) F ( R  i^i  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B ) )
3130adantr 452 . 2  |-  ( (
ph  /\  B  e.  X )  ->  ( [. ( `' R " { B } )  /  u ]. ( u F ( R  i^i  (
u  X.  u ) ) )  =  B  <-> 
( ( `' R " { B } ) F ( R  i^i  ( ( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B ) )
3216, 31mpbid 202 1  |-  ( (
ph  /\  B  e.  X )  ->  (
( `' R " { B } ) F ( R  i^i  (
( `' R " { B } )  X.  ( `' R " { B } ) ) ) )  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   _Vcvv 2956   [.wsbc 3161    i^i cin 3319    C_ wss 3320   {csn 3814   class class class wbr 4212   {copab 4265    We wwe 4540    X. cxp 4876   `'ccnv 4877   dom cdm 4878   "cima 4881  (class class class)co 6081
This theorem is referenced by:  fpwwe2lem8  8512  fpwwe2lem12  8516  fpwwe2lem13  8517  fpwwe2  8518  canthwelem  8525  pwfseqlem4  8537
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-xp 4884  df-rel 4885  df-cnv 4886  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fv 5462  df-ov 6084
  Copyright terms: Public domain W3C validator