MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fpwwecbv Unicode version

Theorem fpwwecbv 8266
Description: Lemma for fpwwe 8268. (Contributed by Mario Carneiro, 15-May-2015.)
Hypothesis
Ref Expression
fpwwe.1  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
Assertion
Ref Expression
fpwwecbv  |-  W  =  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  ( F `  ( `' s " {
z } ) )  =  z ) ) }
Distinct variable groups:    r, a,
s, x, A    y,
a, z, F, r, s, x
Allowed substitution hints:    A( y, z)    W( x, y, z, s, r, a)

Proof of Theorem fpwwecbv
StepHypRef Expression
1 fpwwe.1 . 2  |-  W  =  { <. x ,  r
>.  |  ( (
x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }
2 simpl 443 . . . . . 6  |-  ( ( x  =  a  /\  r  =  s )  ->  x  =  a )
32sseq1d 3205 . . . . 5  |-  ( ( x  =  a  /\  r  =  s )  ->  ( x  C_  A  <->  a 
C_  A ) )
4 simpr 447 . . . . . 6  |-  ( ( x  =  a  /\  r  =  s )  ->  r  =  s )
52, 2xpeq12d 4714 . . . . . 6  |-  ( ( x  =  a  /\  r  =  s )  ->  ( x  X.  x
)  =  ( a  X.  a ) )
64, 5sseq12d 3207 . . . . 5  |-  ( ( x  =  a  /\  r  =  s )  ->  ( r  C_  (
x  X.  x )  <-> 
s  C_  ( a  X.  a ) ) )
73, 6anbi12d 691 . . . 4  |-  ( ( x  =  a  /\  r  =  s )  ->  ( ( x  C_  A  /\  r  C_  (
x  X.  x ) )  <->  ( a  C_  A  /\  s  C_  (
a  X.  a ) ) ) )
8 weeq2 4382 . . . . . 6  |-  ( x  =  a  ->  (
r  We  x  <->  r  We  a ) )
9 weeq1 4381 . . . . . 6  |-  ( r  =  s  ->  (
r  We  a  <->  s  We  a ) )
108, 9sylan9bb 680 . . . . 5  |-  ( ( x  =  a  /\  r  =  s )  ->  ( r  We  x  <->  s  We  a ) )
11 sneq 3651 . . . . . . . . . 10  |-  ( y  =  z  ->  { y }  =  { z } )
1211imaeq2d 5012 . . . . . . . . 9  |-  ( y  =  z  ->  ( `' r " {
y } )  =  ( `' r " { z } ) )
1312fveq2d 5529 . . . . . . . 8  |-  ( y  =  z  ->  ( F `  ( `' r " { y } ) )  =  ( F `  ( `' r " { z } ) ) )
14 id 19 . . . . . . . 8  |-  ( y  =  z  ->  y  =  z )
1513, 14eqeq12d 2297 . . . . . . 7  |-  ( y  =  z  ->  (
( F `  ( `' r " {
y } ) )  =  y  <->  ( F `  ( `' r " { z } ) )  =  z ) )
1615cbvralv 2764 . . . . . 6  |-  ( A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y  <->  A. z  e.  x  ( F `  ( `' r " { z } ) )  =  z )
174cnveqd 4857 . . . . . . . . . 10  |-  ( ( x  =  a  /\  r  =  s )  ->  `' r  =  `' s )
1817imaeq1d 5011 . . . . . . . . 9  |-  ( ( x  =  a  /\  r  =  s )  ->  ( `' r " { z } )  =  ( `' s
" { z } ) )
1918fveq2d 5529 . . . . . . . 8  |-  ( ( x  =  a  /\  r  =  s )  ->  ( F `  ( `' r " {
z } ) )  =  ( F `  ( `' s " {
z } ) ) )
2019eqeq1d 2291 . . . . . . 7  |-  ( ( x  =  a  /\  r  =  s )  ->  ( ( F `  ( `' r " {
z } ) )  =  z  <->  ( F `  ( `' s " { z } ) )  =  z ) )
212, 20raleqbidv 2748 . . . . . 6  |-  ( ( x  =  a  /\  r  =  s )  ->  ( A. z  e.  x  ( F `  ( `' r " {
z } ) )  =  z  <->  A. z  e.  a  ( F `  ( `' s " { z } ) )  =  z ) )
2216, 21syl5bb 248 . . . . 5  |-  ( ( x  =  a  /\  r  =  s )  ->  ( A. y  e.  x  ( F `  ( `' r " {
y } ) )  =  y  <->  A. z  e.  a  ( F `  ( `' s " { z } ) )  =  z ) )
2310, 22anbi12d 691 . . . 4  |-  ( ( x  =  a  /\  r  =  s )  ->  ( ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y )  <-> 
( s  We  a  /\  A. z  e.  a  ( F `  ( `' s " {
z } ) )  =  z ) ) )
247, 23anbi12d 691 . . 3  |-  ( ( x  =  a  /\  r  =  s )  ->  ( ( ( x 
C_  A  /\  r  C_  ( x  X.  x
) )  /\  (
r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) )  <->  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  ( F `  ( `' s " {
z } ) )  =  z ) ) ) )
2524cbvopabv 4088 . 2  |-  { <. x ,  r >.  |  ( ( x  C_  A  /\  r  C_  ( x  X.  x ) )  /\  ( r  We  x  /\  A. y  e.  x  ( F `  ( `' r " { y } ) )  =  y ) ) }  =  { <. a ,  s >.  |  ( ( a 
C_  A  /\  s  C_  ( a  X.  a
) )  /\  (
s  We  a  /\  A. z  e.  a  ( F `  ( `' s " { z } ) )  =  z ) ) }
261, 25eqtri 2303 1  |-  W  =  { <. a ,  s
>.  |  ( (
a  C_  A  /\  s  C_  ( a  X.  a ) )  /\  ( s  We  a  /\  A. z  e.  a  ( F `  ( `' s " {
z } ) )  =  z ) ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623   A.wral 2543    C_ wss 3152   {csn 3640   {copab 4076    We wwe 4351    X. cxp 4687   `'ccnv 4688   "cima 4692   ` cfv 5255
This theorem is referenced by:  canthnum  8271  canthp1  8276
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fv 5263
  Copyright terms: Public domain W3C validator