MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frc Unicode version

Theorem frc 4375
Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 19-Nov-2014.)
Hypothesis
Ref Expression
frc.1  |-  B  e. 
_V
Assertion
Ref Expression
frc  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  { y  e.  B  |  y R x }  =  (/) )
Distinct variable groups:    x, y, A    x, B, y    x, R, y

Proof of Theorem frc
StepHypRef Expression
1 frc.1 . . . 4  |-  B  e. 
_V
2 fri 4371 . . . 4  |-  ( ( ( B  e.  _V  /\  R  Fr  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
31, 2mpanl1 661 . . 3  |-  ( ( R  Fr  A  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
433impb 1147 . 2  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
5 rabeq0 3489 . . 3  |-  ( { y  e.  B  | 
y R x }  =  (/)  <->  A. y  e.  B  -.  y R x )
65rexbii 2581 . 2  |-  ( E. x  e.  B  {
y  e.  B  | 
y R x }  =  (/)  <->  E. x  e.  B  A. y  e.  B  -.  y R x )
74, 6sylibr 203 1  |-  ( ( R  Fr  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  { y  e.  B  |  y R x }  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   {crab 2560   _Vcvv 2801    C_ wss 3165   (/)c0 3468   class class class wbr 4039    Fr wfr 4365
This theorem is referenced by:  frirr  4386  epfrc  4395
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3469  df-fr 4368
  Copyright terms: Public domain W3C validator