MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaun Unicode version

Theorem fresaun 5412
Description: The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014.)
Assertion
Ref Expression
fresaun  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G ) : ( A  u.  B ) --> C )

Proof of Theorem fresaun
StepHypRef Expression
1 simp1 955 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  F : A --> C )
2 inss1 3389 . . . 4  |-  ( A  i^i  B )  C_  A
3 fssres 5408 . . . 4  |-  ( ( F : A --> C  /\  ( A  i^i  B ) 
C_  A )  -> 
( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) --> C )
41, 2, 3sylancl 643 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) --> C )
5 difss 3303 . . . . 5  |-  ( A 
\  B )  C_  A
6 fssres 5408 . . . . 5  |-  ( ( F : A --> C  /\  ( A  \  B ) 
C_  A )  -> 
( F  |`  ( A  \  B ) ) : ( A  \  B ) --> C )
71, 5, 6sylancl 643 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  |`  ( A  \  B ) ) : ( A  \  B
) --> C )
8 simp2 956 . . . . 5  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  G : B --> C )
9 difss 3303 . . . . 5  |-  ( B 
\  A )  C_  B
10 fssres 5408 . . . . 5  |-  ( ( G : B --> C  /\  ( B  \  A ) 
C_  B )  -> 
( G  |`  ( B  \  A ) ) : ( B  \  A ) --> C )
118, 9, 10sylancl 643 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( G  |`  ( B  \  A ) ) : ( B  \  A
) --> C )
12 indifdir 3425 . . . . . 6  |-  ( ( A  \  B )  i^i  ( B  \  A ) )  =  ( ( A  i^i  ( B  \  A ) )  \  ( B  i^i  ( B  \  A ) ) )
13 disjdif 3526 . . . . . . 7  |-  ( A  i^i  ( B  \  A ) )  =  (/)
1413difeq1i 3290 . . . . . 6  |-  ( ( A  i^i  ( B 
\  A ) ) 
\  ( B  i^i  ( B  \  A ) ) )  =  (
(/)  \  ( B  i^i  ( B  \  A
) ) )
15 0dif 3525 . . . . . 6  |-  ( (/)  \  ( B  i^i  ( B  \  A ) ) )  =  (/)
1612, 14, 153eqtri 2307 . . . . 5  |-  ( ( A  \  B )  i^i  ( B  \  A ) )  =  (/)
1716a1i 10 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( A  \  B
)  i^i  ( B  \  A ) )  =  (/) )
18 fun2 5406 . . . 4  |-  ( ( ( ( F  |`  ( A  \  B ) ) : ( A 
\  B ) --> C  /\  ( G  |`  ( B  \  A ) ) : ( B 
\  A ) --> C )  /\  ( ( A  \  B )  i^i  ( B  \  A ) )  =  (/) )  ->  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) : ( ( A  \  B )  u.  ( B  \  A ) ) --> C )
197, 11, 17, 18syl21anc 1181 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) : ( ( A  \  B
)  u.  ( B 
\  A ) ) --> C )
20 indi 3415 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  ( ( ( A  i^i  B )  i^i  ( A  \  B
) )  u.  (
( A  i^i  B
)  i^i  ( B  \  A ) ) )
21 inass 3379 . . . . . . 7  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  ( A  i^i  ( B  i^i  ( A  \  B ) ) )
22 disjdif 3526 . . . . . . . 8  |-  ( B  i^i  ( A  \  B ) )  =  (/)
2322ineq2i 3367 . . . . . . 7  |-  ( A  i^i  ( B  i^i  ( A  \  B ) ) )  =  ( A  i^i  (/) )
24 in0 3480 . . . . . . 7  |-  ( A  i^i  (/) )  =  (/)
2521, 23, 243eqtri 2307 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( A  \  B ) )  =  (/)
26 incom 3361 . . . . . . . 8  |-  ( A  i^i  B )  =  ( B  i^i  A
)
2726ineq1i 3366 . . . . . . 7  |-  ( ( A  i^i  B )  i^i  ( B  \  A ) )  =  ( ( B  i^i  A )  i^i  ( B 
\  A ) )
28 inass 3379 . . . . . . . 8  |-  ( ( B  i^i  A )  i^i  ( B  \  A ) )  =  ( B  i^i  ( A  i^i  ( B  \  A ) ) )
2913ineq2i 3367 . . . . . . . 8  |-  ( B  i^i  ( A  i^i  ( B  \  A ) ) )  =  ( B  i^i  (/) )
30 in0 3480 . . . . . . . 8  |-  ( B  i^i  (/) )  =  (/)
3128, 29, 303eqtri 2307 . . . . . . 7  |-  ( ( B  i^i  A )  i^i  ( B  \  A ) )  =  (/)
3227, 31eqtri 2303 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( B  \  A ) )  =  (/)
3325, 32uneq12i 3327 . . . . 5  |-  ( ( ( A  i^i  B
)  i^i  ( A  \  B ) )  u.  ( ( A  i^i  B )  i^i  ( B 
\  A ) ) )  =  ( (/)  u.  (/) )
34 un0 3479 . . . . 5  |-  ( (/)  u.  (/) )  =  (/)
3520, 33, 343eqtri 2307 . . . 4  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  (/)
3635a1i 10 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( A  i^i  B
)  i^i  ( ( A  \  B )  u.  ( B  \  A
) ) )  =  (/) )
37 fun2 5406 . . 3  |-  ( ( ( ( F  |`  ( A  i^i  B ) ) : ( A  i^i  B ) --> C  /\  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) : ( ( A 
\  B )  u.  ( B  \  A
) ) --> C )  /\  ( ( A  i^i  B )  i^i  ( ( A  \  B )  u.  ( B  \  A ) ) )  =  (/) )  -> 
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B
)  u.  ( ( A  \  B )  u.  ( B  \  A ) ) ) --> C )
384, 19, 36, 37syl21anc 1181 . 2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) ) --> C )
39 ffn 5389 . . . . 5  |-  ( F : A --> C  ->  F  Fn  A )
40 ffn 5389 . . . . 5  |-  ( G : B --> C  ->  G  Fn  B )
41 id 19 . . . . 5  |-  ( ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) )  ->  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B
) ) )
42 resasplit 5411 . . . . 5  |-  ( ( F  Fn  A  /\  G  Fn  B  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
4339, 40, 41, 42syl3an 1224 . . . 4  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G )  =  ( ( F  |`  ( A  i^i  B
) )  u.  (
( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) )
4443feq1d 5379 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  u.  G
) : ( A  u.  B ) --> C  <-> 
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( A  u.  B ) --> C ) )
45 un12 3333 . . . . 5  |-  ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  ( ( A  \  B )  u.  (
( A  i^i  B
)  u.  ( B 
\  A ) ) )
4626uneq1i 3325 . . . . . . 7  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  ( ( B  i^i  A )  u.  ( B 
\  A ) )
47 inundif 3532 . . . . . . 7  |-  ( ( B  i^i  A )  u.  ( B  \  A ) )  =  B
4846, 47eqtri 2303 . . . . . 6  |-  ( ( A  i^i  B )  u.  ( B  \  A ) )  =  B
4948uneq2i 3326 . . . . 5  |-  ( ( A  \  B )  u.  ( ( A  i^i  B )  u.  ( B  \  A
) ) )  =  ( ( A  \  B )  u.  B
)
50 undif1 3529 . . . . 5  |-  ( ( A  \  B )  u.  B )  =  ( A  u.  B
)
5145, 49, 503eqtri 2307 . . . 4  |-  ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) )  =  ( A  u.  B
)
5251feq2i 5384 . . 3  |-  ( ( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B
) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B )  u.  ( ( A 
\  B )  u.  ( B  \  A
) ) ) --> C  <-> 
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( A  u.  B ) --> C )
5344, 52syl6rbbr 255 . 2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( ( F  |`  ( A  i^i  B ) )  u.  ( ( F  |`  ( A  \  B ) )  u.  ( G  |`  ( B  \  A ) ) ) ) : ( ( A  i^i  B
)  u.  ( ( A  \  B )  u.  ( B  \  A ) ) ) --> C  <->  ( F  u.  G ) : ( A  u.  B ) --> C ) )
5438, 53mpbid 201 1  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  ( F  u.  G ) : ( A  u.  B ) --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1623    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455    |` cres 4691    Fn wfn 5250   -->wf 5251
This theorem is referenced by:  cvmliftlem10  23825  elmapresaun  26850
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-fun 5257  df-fn 5258  df-f 5259
  Copyright terms: Public domain W3C validator