MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresaunres1 Unicode version

Theorem fresaunres1 5430
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015.)
Assertion
Ref Expression
fresaunres1  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  u.  G
)  |`  A )  =  F )

Proof of Theorem fresaunres1
StepHypRef Expression
1 uncom 3332 . . 3  |-  ( F  u.  G )  =  ( G  u.  F
)
21reseq1i 4967 . 2  |-  ( ( F  u.  G )  |`  A )  =  ( ( G  u.  F
)  |`  A )
3 incom 3374 . . . . . 6  |-  ( A  i^i  B )  =  ( B  i^i  A
)
43reseq2i 4968 . . . . 5  |-  ( F  |`  ( A  i^i  B
) )  =  ( F  |`  ( B  i^i  A ) )
53reseq2i 4968 . . . . 5  |-  ( G  |`  ( A  i^i  B
) )  =  ( G  |`  ( B  i^i  A ) )
64, 5eqeq12i 2309 . . . 4  |-  ( ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) )  <-> 
( F  |`  ( B  i^i  A ) )  =  ( G  |`  ( B  i^i  A ) ) )
7 eqcom 2298 . . . 4  |-  ( ( F  |`  ( B  i^i  A ) )  =  ( G  |`  ( B  i^i  A ) )  <-> 
( G  |`  ( B  i^i  A ) )  =  ( F  |`  ( B  i^i  A ) ) )
86, 7bitri 240 . . 3  |-  ( ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) )  <-> 
( G  |`  ( B  i^i  A ) )  =  ( F  |`  ( B  i^i  A ) ) )
9 fresaunres2 5429 . . . 4  |-  ( ( G : B --> C  /\  F : A --> C  /\  ( G  |`  ( B  i^i  A ) )  =  ( F  |`  ( B  i^i  A ) ) )  ->  (
( G  u.  F
)  |`  A )  =  F )
1093com12 1155 . . 3  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( G  |`  ( B  i^i  A ) )  =  ( F  |`  ( B  i^i  A ) ) )  ->  (
( G  u.  F
)  |`  A )  =  F )
118, 10syl3an3b 1220 . 2  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( G  u.  F
)  |`  A )  =  F )
122, 11syl5eq 2340 1  |-  ( ( F : A --> C  /\  G : B --> C  /\  ( F  |`  ( A  i^i  B ) )  =  ( G  |`  ( A  i^i  B ) ) )  ->  (
( F  u.  G
)  |`  A )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 934    = wceq 1632    u. cun 3163    i^i cin 3164    |` cres 4707   -->wf 5267
This theorem is referenced by:  mapunen  7046  hashf1lem1  11409  ptuncnv  17514  cvmliftlem10  23840
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-dm 4715  df-res 4717  df-fun 5273  df-fn 5274  df-f 5275
  Copyright terms: Public domain W3C validator