MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpmhm Unicode version

Theorem frgpmhm 15074
Description: The "natural map" from words of the free monoid to their cosets in the free group is a surjective monoid homomorphism. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpmhm.m  |-  M  =  (freeMnd `  ( I  X.  2o ) )
frgpmhm.w  |-  W  =  ( Base `  M
)
frgpmhm.g  |-  G  =  (freeGrp `  I )
frgpmhm.r  |-  .~  =  ( ~FG  `  I )
frgpmhm.f  |-  F  =  ( x  e.  W  |->  [ x ]  .~  )
Assertion
Ref Expression
frgpmhm  |-  ( I  e.  V  ->  F  e.  ( M MndHom  G ) )
Distinct variable groups:    x, G    x, I    x, V    x, W    x,  .~
Allowed substitution hints:    F( x)    M( x)

Proof of Theorem frgpmhm
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2on 6487 . . . . 5  |-  2o  e.  On
2 xpexg 4800 . . . . 5  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
31, 2mpan2 652 . . . 4  |-  ( I  e.  V  ->  (
I  X.  2o )  e.  _V )
4 frgpmhm.m . . . . 5  |-  M  =  (freeMnd `  ( I  X.  2o ) )
54frmdmnd 14481 . . . 4  |-  ( ( I  X.  2o )  e.  _V  ->  M  e.  Mnd )
63, 5syl 15 . . 3  |-  ( I  e.  V  ->  M  e.  Mnd )
7 frgpmhm.g . . . . 5  |-  G  =  (freeGrp `  I )
87frgpgrp 15071 . . . 4  |-  ( I  e.  V  ->  G  e.  Grp )
9 grpmnd 14494 . . . 4  |-  ( G  e.  Grp  ->  G  e.  Mnd )
108, 9syl 15 . . 3  |-  ( I  e.  V  ->  G  e.  Mnd )
116, 10jca 518 . 2  |-  ( I  e.  V  ->  ( M  e.  Mnd  /\  G  e.  Mnd ) )
12 frgpmhm.w . . . . . . . . . 10  |-  W  =  ( Base `  M
)
134, 12frmdbas 14474 . . . . . . . . 9  |-  ( ( I  X.  2o )  e.  _V  ->  W  = Word  ( I  X.  2o ) )
14 wrdexg 11425 . . . . . . . . . 10  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
15 fvi 5579 . . . . . . . . . 10  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
1614, 15syl 15 . . . . . . . . 9  |-  ( ( I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
1713, 16eqtr4d 2318 . . . . . . . 8  |-  ( ( I  X.  2o )  e.  _V  ->  W  =  (  _I  ` Word  ( I  X.  2o ) ) )
183, 17syl 15 . . . . . . 7  |-  ( I  e.  V  ->  W  =  (  _I  ` Word  ( I  X.  2o ) ) )
1918eleq2d 2350 . . . . . 6  |-  ( I  e.  V  ->  (
x  e.  W  <->  x  e.  (  _I  ` Word  ( I  X.  2o ) ) ) )
2019biimpa 470 . . . . 5  |-  ( ( I  e.  V  /\  x  e.  W )  ->  x  e.  (  _I 
` Word  ( I  X.  2o ) ) )
21 frgpmhm.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
22 eqid 2283 . . . . . 6  |-  (  _I 
` Word  ( I  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) )
23 eqid 2283 . . . . . 6  |-  ( Base `  G )  =  (
Base `  G )
247, 21, 22, 23frgpeccl 15070 . . . . 5  |-  ( x  e.  (  _I  ` Word  ( I  X.  2o ) )  ->  [ x ]  .~  e.  ( Base `  G ) )
2520, 24syl 15 . . . 4  |-  ( ( I  e.  V  /\  x  e.  W )  ->  [ x ]  .~  e.  ( Base `  G
) )
26 frgpmhm.f . . . 4  |-  F  =  ( x  e.  W  |->  [ x ]  .~  )
2725, 26fmptd 5684 . . 3  |-  ( I  e.  V  ->  F : W --> ( Base `  G
) )
2822, 21efger 15027 . . . . . . . 8  |-  .~  Er  (  _I  ` Word  ( I  X.  2o ) )
29 ereq2 6668 . . . . . . . . 9  |-  ( W  =  (  _I  ` Word  ( I  X.  2o ) )  ->  (  .~  Er  W  <->  .~  Er  (  _I  ` Word  ( I  X.  2o ) ) ) )
3018, 29syl 15 . . . . . . . 8  |-  ( I  e.  V  ->  (  .~  Er  W  <->  .~  Er  (  _I  ` Word  ( I  X.  2o ) ) ) )
3128, 30mpbiri 224 . . . . . . 7  |-  ( I  e.  V  ->  .~  Er  W )
3231adantr 451 . . . . . 6  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  .~  Er  W )
33 fvex 5539 . . . . . . . 8  |-  ( Base `  M )  e.  _V
3412, 33eqeltri 2353 . . . . . . 7  |-  W  e. 
_V
3534a1i 10 . . . . . 6  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  W  e.  _V )
3632, 35, 26divsfval 13449 . . . . 5  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( F `  ( a concat  b ) )  =  [
( a concat  b ) ]  .~  )
37 eqid 2283 . . . . . . . 8  |-  ( +g  `  M )  =  ( +g  `  M )
384, 12, 37frmdadd 14477 . . . . . . 7  |-  ( ( a  e.  W  /\  b  e.  W )  ->  ( a ( +g  `  M ) b )  =  ( a concat  b
) )
3938adantl 452 . . . . . 6  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  (
a ( +g  `  M
) b )  =  ( a concat  b ) )
4039fveq2d 5529 . . . . 5  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( F `  ( a
( +g  `  M ) b ) )  =  ( F `  (
a concat  b ) ) )
4132, 35, 26divsfval 13449 . . . . . . 7  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( F `  a )  =  [ a ]  .~  )
4232, 35, 26divsfval 13449 . . . . . . 7  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( F `  b )  =  [ b ]  .~  )
4341, 42oveq12d 5876 . . . . . 6  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  (
( F `  a
) ( +g  `  G
) ( F `  b ) )  =  ( [ a ]  .~  ( +g  `  G
) [ b ]  .~  ) )
4418eleq2d 2350 . . . . . . . . 9  |-  ( I  e.  V  ->  (
a  e.  W  <->  a  e.  (  _I  ` Word  ( I  X.  2o ) ) ) )
4518eleq2d 2350 . . . . . . . . 9  |-  ( I  e.  V  ->  (
b  e.  W  <->  b  e.  (  _I  ` Word  ( I  X.  2o ) ) ) )
4644, 45anbi12d 691 . . . . . . . 8  |-  ( I  e.  V  ->  (
( a  e.  W  /\  b  e.  W
)  <->  ( a  e.  (  _I  ` Word  ( I  X.  2o ) )  /\  b  e.  (  _I  ` Word  ( I  X.  2o ) ) ) ) )
4746biimpa 470 . . . . . . 7  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  (
a  e.  (  _I 
` Word  ( I  X.  2o ) )  /\  b  e.  (  _I  ` Word  ( I  X.  2o ) ) ) )
48 eqid 2283 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
4922, 7, 21, 48frgpadd 15072 . . . . . . 7  |-  ( ( a  e.  (  _I 
` Word  ( I  X.  2o ) )  /\  b  e.  (  _I  ` Word  ( I  X.  2o ) ) )  ->  ( [
a ]  .~  ( +g  `  G ) [ b ]  .~  )  =  [ ( a concat  b
) ]  .~  )
5047, 49syl 15 . . . . . 6  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( [ a ]  .~  ( +g  `  G ) [ b ]  .~  )  =  [ (
a concat  b ) ]  .~  )
5143, 50eqtrd 2315 . . . . 5  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  (
( F `  a
) ( +g  `  G
) ( F `  b ) )  =  [ ( a concat  b
) ]  .~  )
5236, 40, 513eqtr4d 2325 . . . 4  |-  ( ( I  e.  V  /\  ( a  e.  W  /\  b  e.  W
) )  ->  ( F `  ( a
( +g  `  M ) b ) )  =  ( ( F `  a ) ( +g  `  G ) ( F `
 b ) ) )
5352ralrimivva 2635 . . 3  |-  ( I  e.  V  ->  A. a  e.  W  A. b  e.  W  ( F `  ( a ( +g  `  M ) b ) )  =  ( ( F `  a ) ( +g  `  G
) ( F `  b ) ) )
5434a1i 10 . . . . 5  |-  ( I  e.  V  ->  W  e.  _V )
5531, 54, 26divsfval 13449 . . . 4  |-  ( I  e.  V  ->  ( F `  (/) )  =  [ (/) ]  .~  )
567, 21frgp0 15069 . . . . 5  |-  ( I  e.  V  ->  ( G  e.  Grp  /\  [ (/)
]  .~  =  ( 0g `  G ) ) )
5756simprd 449 . . . 4  |-  ( I  e.  V  ->  [ (/) ]  .~  =  ( 0g
`  G ) )
5855, 57eqtrd 2315 . . 3  |-  ( I  e.  V  ->  ( F `  (/) )  =  ( 0g `  G
) )
5927, 53, 583jca 1132 . 2  |-  ( I  e.  V  ->  ( F : W --> ( Base `  G )  /\  A. a  e.  W  A. b  e.  W  ( F `  ( a
( +g  `  M ) b ) )  =  ( ( F `  a ) ( +g  `  G ) ( F `
 b ) )  /\  ( F `  (/) )  =  ( 0g
`  G ) ) )
604frmd0 14482 . . 3  |-  (/)  =  ( 0g `  M )
61 eqid 2283 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
6212, 23, 37, 48, 60, 61ismhm 14417 . 2  |-  ( F  e.  ( M MndHom  G
)  <->  ( ( M  e.  Mnd  /\  G  e.  Mnd )  /\  ( F : W --> ( Base `  G )  /\  A. a  e.  W  A. b  e.  W  ( F `  ( a
( +g  `  M ) b ) )  =  ( ( F `  a ) ( +g  `  G ) ( F `
 b ) )  /\  ( F `  (/) )  =  ( 0g
`  G ) ) ) )
6311, 59, 62sylanbrc 645 1  |-  ( I  e.  V  ->  F  e.  ( M MndHom  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   (/)c0 3455    e. cmpt 4077    _I cid 4304   Oncon0 4392    X. cxp 4687   -->wf 5251   ` cfv 5255  (class class class)co 5858   2oc2o 6473    Er wer 6657   [cec 6658  Word cword 11403   concat cconcat 11404   Basecbs 13148   +g cplusg 13208   0gc0g 13400   Mndcmnd 14361   Grpcgrp 14362   MndHom cmhm 14413  freeMndcfrmd 14469   ~FG cefg 15015  freeGrpcfrgp 15016
This theorem is referenced by:  frgpup3lem  15086
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-ot 3650  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-ec 6662  df-qs 6666  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-fzo 10871  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-substr 11412  df-splice 11413  df-reverse 11414  df-s2 11498  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-0g 13404  df-imas 13411  df-divs 13412  df-mnd 14367  df-mhm 14415  df-frmd 14471  df-grp 14489  df-efg 15018  df-frgp 15019
  Copyright terms: Public domain W3C validator