MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3 Structured version   Unicode version

Theorem frgpup3 15412
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup3.g  |-  G  =  (freeGrp `  I )
frgpup3.b  |-  B  =  ( Base `  H
)
frgpup3.u  |-  U  =  (varFGrp `  I )
Assertion
Ref Expression
frgpup3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  E! m  e.  ( G  GrpHom  H ) ( m  o.  U
)  =  F )
Distinct variable groups:    B, m    m, F    m, G    m, H    m, I    U, m   
m, V

Proof of Theorem frgpup3
Dummy variables  g 
k  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.b . . 3  |-  B  =  ( Base `  H
)
2 eqid 2438 . . 3  |-  ( inv g `  H )  =  ( inv g `  H )
3 eqid 2438 . . 3  |-  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y ) ,  ( ( inv g `  H ) `
 ( F `  y ) ) ) )  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y ) ,  ( ( inv g `  H ) `
 ( F `  y ) ) ) )
4 simp1 958 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  H  e.  Grp )
5 simp2 959 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  I  e.  V
)
6 simp3 960 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  F : I --> B )
7 eqid 2438 . . 3  |-  (  _I 
` Word  ( I  X.  2o ) )  =  (  _I  ` Word  ( I  X.  2o ) )
8 eqid 2438 . . 3  |-  ( ~FG  `  I
)  =  ( ~FG  `  I
)
9 frgpup3.g . . 3  |-  G  =  (freeGrp `  I )
10 eqid 2438 . . 3  |-  ( Base `  G )  =  (
Base `  G )
11 eqid 2438 . . 3  |-  ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  =  ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11frgpup1 15409 . 2  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  e.  ( G 
GrpHom  H ) )
134adantr 453 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  H  e.  Grp )
145adantr 453 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  I  e.  V )
156adantr 453 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  F :
I --> B )
16 frgpup3.u . . . . 5  |-  U  =  (varFGrp `  I )
17 simpr 449 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  k  e.  I )
181, 2, 3, 13, 14, 15, 7, 8, 9, 10, 11, 16, 17frgpup2 15410 . . . 4  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  k  e.  I
)  ->  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) )  =  ( F `  k
) )
1918mpteq2dva 4297 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ( k  e.  I  |->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) ) )  =  ( k  e.  I  |->  ( F `  k ) ) )
2010, 1ghmf 15012 . . . . 5  |-  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  e.  ( G 
GrpHom  H )  ->  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) : ( Base `  G ) --> B )
2112, 20syl 16 . . . 4  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) : ( Base `  G ) --> B )
228, 16, 9, 10vrgpf 15402 . . . . 5  |-  ( I  e.  V  ->  U : I --> ( Base `  G ) )
235, 22syl 16 . . . 4  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  U : I --> ( Base `  G
) )
24 fcompt 5906 . . . 4  |-  ( ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) : ( Base `  G ) --> B  /\  U : I --> ( Base `  G ) )  -> 
( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  ( k  e.  I  |->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) ) ) )
2521, 23, 24syl2anc 644 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  ( k  e.  I  |->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) `  ( U `  k ) ) ) )
266feqmptd 5781 . . 3  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  F  =  ( k  e.  I  |->  ( F `  k ) ) )
2719, 25, 263eqtr4d 2480 . 2  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  ( ran  (
g  e.  (  _I 
` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  F )
284adantr 453 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  H  e.  Grp )
295adantr 453 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  I  e.  V )
306adantr 453 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  F : I --> B )
31 simprl 734 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  m  e.  ( G  GrpHom  H ) )
32 simprr 735 . . . . 5  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  (
m  o.  U )  =  F )
331, 2, 3, 28, 29, 30, 7, 8, 9, 10, 11, 16, 31, 32frgpup3lem 15411 . . . 4  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  ( m  e.  ( G  GrpHom  H )  /\  ( m  o.  U )  =  F ) )  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) )
3433expr 600 . . 3  |-  ( ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  /\  m  e.  ( G  GrpHom  H ) )  ->  ( ( m  o.  U )  =  F  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) ) )
3534ralrimiva 2791 . 2  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  A. m  e.  ( G  GrpHom  H ) ( ( m  o.  U
)  =  F  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) ) )
36 coeq1 5032 . . . 4  |-  ( m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  ->  ( m  o.  U )  =  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U ) )
3736eqeq1d 2446 . . 3  |-  ( m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  ->  ( (
m  o.  U )  =  F  <->  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  F ) )
3837eqreu 3128 . 2  |-  ( ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  e.  ( G 
GrpHom  H )  /\  ( ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) )  |->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
)  o.  U )  =  F  /\  A. m  e.  ( G  GrpHom  H ) ( ( m  o.  U )  =  F  ->  m  =  ran  ( g  e.  (  _I  ` Word  ( I  X.  2o ) ) 
|->  <. [ g ] ( ~FG  `  I ) ,  ( H  gsumg  ( ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `
 y ) ,  ( ( inv g `  H ) `  ( F `  y )
) ) )  o.  g ) ) >.
) ) )  ->  E! m  e.  ( G  GrpHom  H ) ( m  o.  U )  =  F )
3912, 27, 35, 38syl3anc 1185 1  |-  ( ( H  e.  Grp  /\  I  e.  V  /\  F : I --> B )  ->  E! m  e.  ( G  GrpHom  H ) ( m  o.  U
)  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   A.wral 2707   E!wreu 2709   (/)c0 3630   ifcif 3741   <.cop 3819    e. cmpt 4268    _I cid 4495    X. cxp 4878   ran crn 4881    o. ccom 4884   -->wf 5452   ` cfv 5456  (class class class)co 6083    e. cmpt2 6085   2oc2o 6720   [cec 6905  Word cword 11719   Basecbs 13471    gsumg cgsu 13726   Grpcgrp 14687   inv gcminusg 14688    GrpHom cghm 15005   ~FG cefg 15340  freeGrpcfrgp 15341  varFGrpcvrgp 15342
This theorem is referenced by:  0frgp  15413  frgpcyg  16856
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4322  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-ot 3826  df-uni 4018  df-int 4053  df-iun 4097  df-iin 4098  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-2o 6727  df-oadd 6730  df-er 6907  df-ec 6909  df-qs 6913  df-map 7022  df-pm 7023  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-sup 7448  df-card 7828  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-fz 11046  df-fzo 11138  df-seq 11326  df-hash 11621  df-word 11725  df-concat 11726  df-s1 11727  df-substr 11728  df-splice 11729  df-reverse 11730  df-s2 11814  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-sca 13547  df-vsca 13548  df-tset 13550  df-ple 13551  df-ds 13553  df-0g 13729  df-gsum 13730  df-imas 13736  df-divs 13737  df-mnd 14692  df-mhm 14740  df-submnd 14741  df-frmd 14796  df-vrmd 14797  df-grp 14814  df-minusg 14815  df-ghm 15006  df-efg 15343  df-frgp 15344  df-vrgp 15345
  Copyright terms: Public domain W3C validator