MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpup3lem Structured version   Unicode version

Theorem frgpup3lem 15409
Description: The evaluation map has the intended behavior on the generators. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 28-Feb-2016.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( inv g `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
frgpup.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
frgpup.r  |-  .~  =  ( ~FG  `  I )
frgpup.g  |-  G  =  (freeGrp `  I )
frgpup.x  |-  X  =  ( Base `  G
)
frgpup.e  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
frgpup.u  |-  U  =  (varFGrp `  I )
frgpup3.k  |-  ( ph  ->  K  e.  ( G 
GrpHom  H ) )
frgpup3.e  |-  ( ph  ->  ( K  o.  U
)  =  F )
Assertion
Ref Expression
frgpup3lem  |-  ( ph  ->  K  =  E )
Distinct variable groups:    y, g,
z    g, H    y, F, z    y, N, z    B, g, y, z    T, g    .~ , g    ph, g, y, z    y, I, z   
g, W
Allowed substitution hints:    .~ ( y, z)    T( y, z)    U( y, z, g)    E( y, z, g)    F( g)    G( y, z, g)    H( y, z)    I( g)    K( y, z, g)    N( g)    V( y, z, g)    W( y, z)    X( y, z, g)

Proof of Theorem frgpup3lem
Dummy variables  a 
t  n  i  j  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgpup3.k . . 3  |-  ( ph  ->  K  e.  ( G 
GrpHom  H ) )
2 frgpup.x . . . 4  |-  X  =  ( Base `  G
)
3 frgpup.b . . . 4  |-  B  =  ( Base `  H
)
42, 3ghmf 15010 . . 3  |-  ( K  e.  ( G  GrpHom  H )  ->  K : X
--> B )
5 ffn 5591 . . 3  |-  ( K : X --> B  ->  K  Fn  X )
61, 4, 53syl 19 . 2  |-  ( ph  ->  K  Fn  X )
7 frgpup.n . . . 4  |-  N  =  ( inv g `  H )
8 frgpup.t . . . 4  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
9 frgpup.h . . . 4  |-  ( ph  ->  H  e.  Grp )
10 frgpup.i . . . 4  |-  ( ph  ->  I  e.  V )
11 frgpup.a . . . 4  |-  ( ph  ->  F : I --> B )
12 frgpup.w . . . 4  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
13 frgpup.r . . . 4  |-  .~  =  ( ~FG  `  I )
14 frgpup.g . . . 4  |-  G  =  (freeGrp `  I )
15 frgpup.e . . . 4  |-  E  =  ran  ( g  e.  W  |->  <. [ g ]  .~  ,  ( H 
gsumg  ( T  o.  g
) ) >. )
163, 7, 8, 9, 10, 11, 12, 13, 14, 2, 15frgpup1 15407 . . 3  |-  ( ph  ->  E  e.  ( G 
GrpHom  H ) )
172, 3ghmf 15010 . . 3  |-  ( E  e.  ( G  GrpHom  H )  ->  E : X
--> B )
18 ffn 5591 . . 3  |-  ( E : X --> B  ->  E  Fn  X )
1916, 17, 183syl 19 . 2  |-  ( ph  ->  E  Fn  X )
20 eqid 2436 . . . . . . . . 9  |-  (freeMnd `  (
I  X.  2o ) )  =  (freeMnd `  (
I  X.  2o ) )
2114, 20, 13frgpval 15390 . . . . . . . 8  |-  ( I  e.  V  ->  G  =  ( (freeMnd `  (
I  X.  2o ) )  /.s 
.~  ) )
2210, 21syl 16 . . . . . . 7  |-  ( ph  ->  G  =  ( (freeMnd `  ( I  X.  2o ) )  /.s  .~  )
)
23 2on 6732 . . . . . . . . . . 11  |-  2o  e.  On
24 xpexg 4989 . . . . . . . . . . 11  |-  ( ( I  e.  V  /\  2o  e.  On )  -> 
( I  X.  2o )  e.  _V )
2510, 23, 24sylancl 644 . . . . . . . . . 10  |-  ( ph  ->  ( I  X.  2o )  e.  _V )
26 wrdexg 11739 . . . . . . . . . 10  |-  ( ( I  X.  2o )  e.  _V  -> Word  ( I  X.  2o )  e. 
_V )
27 fvi 5783 . . . . . . . . . 10  |-  (Word  (
I  X.  2o )  e.  _V  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  (
I  X.  2o ) )
2825, 26, 273syl 19 . . . . . . . . 9  |-  ( ph  ->  (  _I  ` Word  ( I  X.  2o ) )  = Word  ( I  X.  2o ) )
2912, 28syl5eq 2480 . . . . . . . 8  |-  ( ph  ->  W  = Word  ( I  X.  2o ) )
30 eqid 2436 . . . . . . . . . 10  |-  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) )
3120, 30frmdbas 14797 . . . . . . . . 9  |-  ( ( I  X.  2o )  e.  _V  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
3225, 31syl 16 . . . . . . . 8  |-  ( ph  ->  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word  ( I  X.  2o ) )
3329, 32eqtr4d 2471 . . . . . . 7  |-  ( ph  ->  W  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
34 fvex 5742 . . . . . . . . 9  |-  ( ~FG  `  I
)  e.  _V
3513, 34eqeltri 2506 . . . . . . . 8  |-  .~  e.  _V
3635a1i 11 . . . . . . 7  |-  ( ph  ->  .~  e.  _V )
37 fvex 5742 . . . . . . . 8  |-  (freeMnd `  (
I  X.  2o ) )  e.  _V
3837a1i 11 . . . . . . 7  |-  ( ph  ->  (freeMnd `  ( I  X.  2o ) )  e. 
_V )
3922, 33, 36, 38divsbas 13770 . . . . . 6  |-  ( ph  ->  ( W /.  .~  )  =  ( Base `  G ) )
4039, 2syl6reqr 2487 . . . . 5  |-  ( ph  ->  X  =  ( W /.  .~  ) )
41 eqimss 3400 . . . . 5  |-  ( X  =  ( W /.  .~  )  ->  X  C_  ( W /.  .~  ) )
4240, 41syl 16 . . . 4  |-  ( ph  ->  X  C_  ( W /.  .~  ) )
4342sselda 3348 . . 3  |-  ( (
ph  /\  a  e.  X )  ->  a  e.  ( W /.  .~  ) )
44 eqid 2436 . . . 4  |-  ( W /.  .~  )  =  ( W /.  .~  )
45 fveq2 5728 . . . . 5  |-  ( [ t ]  .~  =  a  ->  ( K `  [ t ]  .~  )  =  ( K `  a ) )
46 fveq2 5728 . . . . 5  |-  ( [ t ]  .~  =  a  ->  ( E `  [ t ]  .~  )  =  ( E `  a ) )
4745, 46eqeq12d 2450 . . . 4  |-  ( [ t ]  .~  =  a  ->  ( ( K `
 [ t ]  .~  )  =  ( E `  [ t ]  .~  )  <->  ( K `  a )  =  ( E `  a ) ) )
48 simpr 448 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  W )  ->  t  e.  W )
4929adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  t  e.  W )  ->  W  = Word  ( I  X.  2o ) )
5048, 49eleqtrd 2512 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  W )  ->  t  e. Word  ( I  X.  2o ) )
51 wrdf 11733 . . . . . . . . . . . . 13  |-  ( t  e. Word  ( I  X.  2o )  ->  t : ( 0..^ ( # `  t ) ) --> ( I  X.  2o ) )
5250, 51syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  t : ( 0..^ (
# `  t )
) --> ( I  X.  2o ) )
5352ffvelrnda 5870 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( t `  n )  e.  ( I  X.  2o ) )
54 elxp2 4896 . . . . . . . . . . 11  |-  ( ( t `  n )  e.  ( I  X.  2o )  <->  E. i  e.  I  E. j  e.  2o  ( t `  n
)  =  <. i ,  j >. )
5553, 54sylib 189 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  E. i  e.  I  E. j  e.  2o  ( t `  n
)  =  <. i ,  j >. )
56 fveq2 5728 . . . . . . . . . . . . . . . . 17  |-  ( y  =  i  ->  ( F `  y )  =  ( F `  i ) )
5756fveq2d 5732 . . . . . . . . . . . . . . . . 17  |-  ( y  =  i  ->  ( N `  ( F `  y ) )  =  ( N `  ( F `  i )
) )
5856, 57ifeq12d 3755 . . . . . . . . . . . . . . . 16  |-  ( y  =  i  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  =  if ( z  =  (/) ,  ( F `
 i ) ,  ( N `  ( F `  i )
) ) )
59 eqeq1 2442 . . . . . . . . . . . . . . . . 17  |-  ( z  =  j  ->  (
z  =  (/)  <->  j  =  (/) ) )
6059ifbid 3757 . . . . . . . . . . . . . . . 16  |-  ( z  =  j  ->  if ( z  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  if ( j  =  (/) ,  ( F `
 i ) ,  ( N `  ( F `  i )
) ) )
61 fvex 5742 . . . . . . . . . . . . . . . . 17  |-  ( F `
 i )  e. 
_V
62 fvex 5742 . . . . . . . . . . . . . . . . 17  |-  ( N `
 ( F `  i ) )  e. 
_V
6361, 62ifex 3797 . . . . . . . . . . . . . . . 16  |-  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  e.  _V
6458, 60, 8, 63ovmpt2 6209 . . . . . . . . . . . . . . 15  |-  ( ( i  e.  I  /\  j  e.  2o )  ->  ( i T j )  =  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) ) )
6564adantl 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( i T j )  =  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) ) )
66 elpri 3834 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  { (/) ,  1o }  ->  ( j  =  (/)  \/  j  =  1o ) )
67 df2o3 6737 . . . . . . . . . . . . . . . . 17  |-  2o  =  { (/) ,  1o }
6866, 67eleq2s 2528 . . . . . . . . . . . . . . . 16  |-  ( j  e.  2o  ->  (
j  =  (/)  \/  j  =  1o ) )
69 frgpup3.e . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( K  o.  U
)  =  F )
7069adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( K  o.  U )  =  F )
7170fveq1d 5730 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  (
( K  o.  U
) `  i )  =  ( F `  i ) )
72 frgpup.u . . . . . . . . . . . . . . . . . . . . . . 23  |-  U  =  (varFGrp `  I )
7313, 72, 14, 2vrgpf 15400 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( I  e.  V  ->  U : I --> X )
7410, 73syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  U : I --> X )
75 fvco3 5800 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U : I --> X  /\  i  e.  I )  ->  ( ( K  o.  U ) `  i
)  =  ( K `
 ( U `  i ) ) )
7674, 75sylan 458 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  (
( K  o.  U
) `  i )  =  ( K `  ( U `  i ) ) )
7771, 76eqtr3d 2470 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  I )  ->  ( F `  i )  =  ( K `  ( U `  i ) ) )
7877adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( F `  i )  =  ( K `  ( U `  i ) ) )
79 iftrue 3745 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  (/)  ->  if ( j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  =  ( F `  i ) )
8079adantl 453 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( F `  i ) )
81 simpr 448 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  j  =  (/) )
8281opeq2d 3991 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  <. i ,  j >.  =  <. i ,  (/) >. )
8382s1eqd 11754 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  <" <. i ,  j >. ">  =  <" <. i ,  (/) >. "> )
84 eceq1 6941 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <" <. i ,  j
>. ">  =  <"
<. i ,  (/) >. ">  ->  [ <" <. i ,  j >. "> ]  .~  =  [ <"
<. i ,  (/) >. "> ]  .~  )
8583, 84syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  [ <"
<. i ,  j >. "> ]  .~  =  [ <" <. i ,  (/) >. "> ]  .~  )
8613, 72vrgpval 15399 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  i  e.  I )  ->  ( U `  i
)  =  [ <"
<. i ,  (/) >. "> ]  .~  )
8710, 86sylan 458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( U `  i )  =  [ <" <. i ,  (/) >. "> ]  .~  )
8887adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( U `  i )  =  [ <" <. i ,  (/) >. "> ]  .~  )
8985, 88eqtr4d 2471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  [ <"
<. i ,  j >. "> ]  .~  =  ( U `  i ) )
9089fveq2d 5732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  ( K `  [ <" <. i ,  j >. "> ]  .~  )  =  ( K `  ( U `
 i ) ) )
9178, 80, 903eqtr4d 2478 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  (/) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
9277fveq2d 5732 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  ( N `  ( F `  i ) )  =  ( N `  ( K `  ( U `  i ) ) ) )
931adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  K  e.  ( G  GrpHom  H ) )
9474ffvelrnda 5870 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  ( U `  i )  e.  X )
95 eqid 2436 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( inv g `  G )  =  ( inv g `  G )
962, 95, 7ghminv 15013 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ( G 
GrpHom  H )  /\  ( U `  i )  e.  X )  ->  ( K `  ( ( inv g `  G ) `
 ( U `  i ) ) )  =  ( N `  ( K `  ( U `
 i ) ) ) )
9793, 94, 96syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  i  e.  I )  ->  ( K `  ( ( inv g `  G ) `
 ( U `  i ) ) )  =  ( N `  ( K `  ( U `
 i ) ) ) )
9892, 97eqtr4d 2471 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  i  e.  I )  ->  ( N `  ( F `  i ) )  =  ( K `  (
( inv g `  G ) `  ( U `  i )
) ) )
9998adantr 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  ( N `  ( F `  i ) )  =  ( K `  (
( inv g `  G ) `  ( U `  i )
) ) )
100 1n0 6739 . . . . . . . . . . . . . . . . . . . 20  |-  1o  =/=  (/)
101 simpr 448 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  j  =  1o )
102101neeq1d 2614 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  (
j  =/=  (/)  <->  1o  =/=  (/) ) )
103100, 102mpbiri 225 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  j  =/=  (/) )
104 ifnefalse 3747 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =/=  (/)  ->  if (
j  =  (/) ,  ( F `  i ) ,  ( N `  ( F `  i ) ) )  =  ( N `  ( F `
 i ) ) )
105103, 104syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( N `  ( F `  i ) ) )
106101opeq2d 3991 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  <. i ,  j >.  =  <. i ,  1o >. )
107106s1eqd 11754 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  <" <. i ,  j >. ">  =  <" <. i ,  1o >. "> )
108 eceq1 6941 . . . . . . . . . . . . . . . . . . . . 21  |-  ( <" <. i ,  j
>. ">  =  <"
<. i ,  1o >. ">  ->  [ <" <. i ,  j >. "> ]  .~  =  [ <"
<. i ,  1o >. "> ]  .~  )
109107, 108syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  [ <"
<. i ,  j >. "> ]  .~  =  [ <" <. i ,  1o >. "> ]  .~  )
11013, 72, 14, 95vrgpinv 15401 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( I  e.  V  /\  i  e.  I )  ->  ( ( inv g `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
11110, 110sylan 458 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  i  e.  I )  ->  (
( inv g `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
112111adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  (
( inv g `  G ) `  ( U `  i )
)  =  [ <"
<. i ,  1o >. "> ]  .~  )
113109, 112eqtr4d 2471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  [ <"
<. i ,  j >. "> ]  .~  =  ( ( inv g `  G ) `  ( U `  i )
) )
114113fveq2d 5732 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  ( K `  [ <" <. i ,  j >. "> ]  .~  )  =  ( K `  ( ( inv g `  G
) `  ( U `  i ) ) ) )
11599, 105, 1143eqtr4d 2478 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  i  e.  I )  /\  j  =  1o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11691, 115jaodan 761 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  i  e.  I )  /\  (
j  =  (/)  \/  j  =  1o ) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11768, 116sylan2 461 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  i  e.  I )  /\  j  e.  2o )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
118117anasss 629 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  ->  if ( j  =  (/) ,  ( F `  i
) ,  ( N `
 ( F `  i ) ) )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
11965, 118eqtrd 2468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( i T j )  =  ( K `
 [ <" <. i ,  j >. "> ]  .~  ) )
120 fveq2 5728 . . . . . . . . . . . . . . 15  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( T `  ( t `  n
) )  =  ( T `  <. i ,  j >. )
)
121 df-ov 6084 . . . . . . . . . . . . . . 15  |-  ( i T j )  =  ( T `  <. i ,  j >. )
122120, 121syl6eqr 2486 . . . . . . . . . . . . . 14  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( T `  ( t `  n
) )  =  ( i T j ) )
123 s1eq 11753 . . . . . . . . . . . . . . . 16  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  <" ( t `
 n ) ">  =  <" <. i ,  j >. "> )
124 eceq1 6941 . . . . . . . . . . . . . . . 16  |-  ( <" ( t `  n ) ">  =  <" <. i ,  j >. ">  ->  [ <" (
t `  n ) "> ]  .~  =  [ <" <. i ,  j >. "> ]  .~  )
125123, 124syl 16 . . . . . . . . . . . . . . 15  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  [ <" (
t `  n ) "> ]  .~  =  [ <" <. i ,  j >. "> ]  .~  )
126125fveq2d 5732 . . . . . . . . . . . . . 14  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( K `  [ <" ( t `
 n ) "> ]  .~  )  =  ( K `  [ <" <. i ,  j >. "> ]  .~  ) )
127122, 126eqeq12d 2450 . . . . . . . . . . . . 13  |-  ( ( t `  n )  =  <. i ,  j
>.  ->  ( ( T `
 ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  )  <->  ( i T j )  =  ( K `  [ <" <. i ,  j
>. "> ]  .~  ) ) )
128119, 127syl5ibrcom 214 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( i  e.  I  /\  j  e.  2o ) )  -> 
( ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
129128rexlimdvva 2837 . . . . . . . . . . 11  |-  ( ph  ->  ( E. i  e.  I  E. j  e.  2o  ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
130129ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( E. i  e.  I  E. j  e.  2o  ( t `  n )  =  <. i ,  j >.  ->  ( T `  ( t `  n ) )  =  ( K `  [ <" ( t `  n ) "> ]  .~  ) ) )
13155, 130mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  ( T `  ( t `  n
) )  =  ( K `  [ <" ( t `  n
) "> ]  .~  ) )
132131mpteq2dva 4295 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
n  e.  ( 0..^ ( # `  t
) )  |->  ( T `
 ( t `  n ) ) )  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( K `  [ <" ( t `  n
) "> ]  .~  ) ) )
1333, 7, 8, 9, 10, 11frgpuptf 15402 . . . . . . . . . 10  |-  ( ph  ->  T : ( I  X.  2o ) --> B )
134133adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  T : ( I  X.  2o ) --> B )
135 fcompt 5904 . . . . . . . . 9  |-  ( ( T : ( I  X.  2o ) --> B  /\  t : ( 0..^ ( # `  t
) ) --> ( I  X.  2o ) )  ->  ( T  o.  t )  =  ( n  e.  ( 0..^ ( # `  t
) )  |->  ( T `
 ( t `  n ) ) ) )
136134, 52, 135syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  ( T  o.  t )  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( T `  ( t `
 n ) ) ) )
13753s1cld 11756 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  <" ( t `
 n ) ">  e. Word  ( I  X.  2o ) )
13829ad2antrr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  W  = Word  (
I  X.  2o ) )
139137, 138eleqtrrd 2513 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  <" ( t `
 n ) ">  e.  W )
14014, 13, 12, 2frgpeccl 15393 . . . . . . . . . 10  |-  ( <" ( t `  n ) ">  e.  W  ->  [ <" ( t `  n
) "> ]  .~  e.  X )
141139, 140syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  W )  /\  n  e.  ( 0..^ ( # `  t ) ) )  ->  [ <" (
t `  n ) "> ]  .~  e.  X )
14252feqmptd 5779 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  t  =  ( n  e.  ( 0..^ ( # `  t ) )  |->  ( t `  n ) ) )
14310adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  t  e.  W )  ->  I  e.  V )
144143, 23, 24sylancl 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  (
I  X.  2o )  e.  _V )
145 eqid 2436 . . . . . . . . . . . . 13  |-  (varFMnd `  (
I  X.  2o ) )  =  (varFMnd `  (
I  X.  2o ) )
146145vrmdfval 14801 . . . . . . . . . . . 12  |-  ( ( I  X.  2o )  e.  _V  ->  (varFMnd `  (
I  X.  2o ) )  =  ( w  e.  ( I  X.  2o )  |->  <" w "> ) )
147144, 146syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) )  =  ( w  e.  ( I  X.  2o )  |->  <" w "> ) )
148 s1eq 11753 . . . . . . . . . . 11  |-  ( w  =  ( t `  n )  ->  <" w ">  =  <" (
t `  n ) "> )
14953, 142, 147, 148fmptco 5901 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  =  ( n  e.  ( 0..^ (
# `  t )
)  |->  <" ( t `
 n ) "> ) )
150 eqidd 2437 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  W  |->  [ w ]  .~  ) )
151 eceq1 6941 . . . . . . . . . 10  |-  ( w  =  <" ( t `
 n ) ">  ->  [ w ]  .~  =  [ <" ( t `  n
) "> ]  .~  )
152139, 149, 150, 151fmptco 5901 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  =  ( n  e.  ( 0..^ (
# `  t )
)  |->  [ <" (
t `  n ) "> ]  .~  )
)
1531adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  K  e.  ( G  GrpHom  H ) )
154153, 4syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  K : X --> B )
155154feqmptd 5779 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  K  =  ( w  e.  X  |->  ( K `  w ) ) )
156 fveq2 5728 . . . . . . . . 9  |-  ( w  =  [ <" (
t `  n ) "> ]  .~  ->  ( K `  w )  =  ( K `  [ <" ( t `
 n ) "> ]  .~  )
)
157141, 152, 155, 156fmptco 5901 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  ( K  o.  ( (
w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( n  e.  ( 0..^ ( # `  t
) )  |->  ( K `
 [ <" (
t `  n ) "> ]  .~  )
) )
158132, 136, 1573eqtr4d 2478 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  ( T  o.  t )  =  ( K  o.  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
159158oveq2d 6097 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( H  gsumg  ( T  o.  t
) )  =  ( H  gsumg  ( K  o.  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) ) )
1603, 7, 8, 9, 10, 11, 12, 13, 14, 2, 15frgpupval 15406 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( E `  [ t ]  .~  )  =  ( H  gsumg  ( T  o.  t
) ) )
161 ghmmhm 15016 . . . . . . . 8  |-  ( K  e.  ( G  GrpHom  H )  ->  K  e.  ( G MndHom  H ) )
162153, 161syl 16 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  K  e.  ( G MndHom  H ) )
163145vrmdf 14803 . . . . . . . . . . 11  |-  ( ( I  X.  2o )  e.  _V  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )
164144, 163syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )
165 feq3 5578 . . . . . . . . . . 11  |-  ( W  = Word  ( I  X.  2o )  ->  ( (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W  <->  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) ) )
16649, 165syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W  <->  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) ) )
167164, 166mpbird 224 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (varFMnd `  (
I  X.  2o ) ) : ( I  X.  2o ) --> W )
168 wrdco 11800 . . . . . . . . 9  |-  ( ( t  e. Word  ( I  X.  2o )  /\  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) --> W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W )
16950, 167, 168syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W )
17033adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  t  e.  W )  ->  W  =  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
171170mpteq1d 4290 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )
)
172 eqid 2436 . . . . . . . . . . . . 13  |-  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )  =  ( w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  |->  [ w ]  .~  )
17320, 30, 14, 13, 172frgpmhm 15397 . . . . . . . . . . . 12  |-  ( I  e.  V  ->  (
w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) 
|->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G ) )
174143, 173syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) 
|->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G ) )
175171, 174eqeltrd 2510 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  (
I  X.  2o ) ) MndHom  G ) )
17630, 2mhmf 14743 . . . . . . . . . 10  |-  ( ( w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  (
I  X.  2o ) ) MndHom  G )  -> 
( w  e.  W  |->  [ w ]  .~  ) : ( Base `  (freeMnd `  ( I  X.  2o ) ) ) --> X )
177175, 176syl 16 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  ) : ( Base `  (freeMnd `  ( I  X.  2o ) ) ) --> X )
178170feq2d 5581 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) : W --> X  <->  ( w  e.  W  |->  [ w ]  .~  ) : (
Base `  (freeMnd `  (
I  X.  2o ) ) ) --> X ) )
179177, 178mpbird 224 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
w  e.  W  |->  [ w ]  .~  ) : W --> X )
180 wrdco 11800 . . . . . . . 8  |-  ( ( ( (varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  W  /\  ( w  e.  W  |->  [ w ]  .~  ) : W --> X )  ->  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) )  e. Word  X
)
181169, 179, 180syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  e. Word  X )
1822gsumwmhm 14790 . . . . . . 7  |-  ( ( K  e.  ( G MndHom  H )  /\  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) )  e. Word  X )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )  =  ( H  gsumg  ( K  o.  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) ) )
183162, 181, 182syl2anc 643 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) )  =  ( H  gsumg  ( K  o.  (
( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) ) )
184159, 160, 1833eqtr4d 2478 . . . . 5  |-  ( (
ph  /\  t  e.  W )  ->  ( E `  [ t ]  .~  )  =  ( K `  ( G 
gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) ) )
18520, 145frmdgsum 14807 . . . . . . . . 9  |-  ( ( ( I  X.  2o )  e.  _V  /\  t  e. Word  ( I  X.  2o ) )  ->  (
(freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) )  =  t )
186144, 50, 185syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) )  =  t )
187186fveq2d 5732 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( ( w  e.  W  |->  [ w ]  .~  ) `  t ) )
188 wrdco 11800 . . . . . . . . . 10  |-  ( ( t  e. Word  ( I  X.  2o )  /\  (varFMnd `  ( I  X.  2o ) ) : ( I  X.  2o ) -->Word  ( I  X.  2o ) )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word Word  ( I  X.  2o ) )
18950, 164, 188syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word Word  ( I  X.  2o ) )
19032adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  t  e.  W )  ->  ( Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o ) )
191 wrdeq 11738 . . . . . . . . . 10  |-  ( (
Base `  (freeMnd `  (
I  X.  2o ) ) )  = Word  (
I  X.  2o )  -> Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word Word  ( I  X.  2o ) )
192190, 191syl 16 . . . . . . . . 9  |-  ( (
ph  /\  t  e.  W )  -> Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) )  = Word Word  ( I  X.  2o ) )
193189, 192eleqtrrd 2513 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  (
(varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )
19430gsumwmhm 14790 . . . . . . . 8  |-  ( ( ( w  e.  W  |->  [ w ]  .~  )  e.  ( (freeMnd `  ( I  X.  2o ) ) MndHom  G )  /\  ( (varFMnd `  ( I  X.  2o ) )  o.  t
)  e. Word  ( Base `  (freeMnd `  ( I  X.  2o ) ) ) )  ->  ( (
w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  (
I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
195175, 193, 194syl2anc 643 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  ( (freeMnd `  ( I  X.  2o ) )  gsumg  ( (varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) ) )
19612, 13efger 15350 . . . . . . . . 9  |-  .~  Er  W
197196a1i 11 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  .~  Er  W )
198 fvex 5742 . . . . . . . . . 10  |-  (  _I 
` Word  ( I  X.  2o ) )  e.  _V
19912, 198eqeltri 2506 . . . . . . . . 9  |-  W  e. 
_V
200199a1i 11 . . . . . . . 8  |-  ( (
ph  /\  t  e.  W )  ->  W  e.  _V )
201 eqid 2436 . . . . . . . 8  |-  ( w  e.  W  |->  [ w ]  .~  )  =  ( w  e.  W  |->  [ w ]  .~  )
202197, 200, 201divsfval 13772 . . . . . . 7  |-  ( (
ph  /\  t  e.  W )  ->  (
( w  e.  W  |->  [ w ]  .~  ) `  t )  =  [ t ]  .~  )
203187, 195, 2023eqtr3d 2476 . . . . . 6  |-  ( (
ph  /\  t  e.  W )  ->  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  (
(varFMnd `  ( I  X.  2o ) )  o.  t
) ) )  =  [ t ]  .~  )
204203fveq2d 5732 . . . . 5  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  ( G  gsumg  ( ( w  e.  W  |->  [ w ]  .~  )  o.  ( (varFMnd `  (
I  X.  2o ) )  o.  t ) ) ) )  =  ( K `  [
t ]  .~  )
)
205184, 204eqtr2d 2469 . . . 4  |-  ( (
ph  /\  t  e.  W )  ->  ( K `  [ t ]  .~  )  =  ( E `  [ t ]  .~  ) )
20644, 47, 205ectocld 6971 . . 3  |-  ( (
ph  /\  a  e.  ( W /.  .~  )
)  ->  ( K `  a )  =  ( E `  a ) )
20743, 206syldan 457 . 2  |-  ( (
ph  /\  a  e.  X )  ->  ( K `  a )  =  ( E `  a ) )
2086, 19, 207eqfnfvd 5830 1  |-  ( ph  ->  K  =  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2599   E.wrex 2706   _Vcvv 2956    C_ wss 3320   (/)c0 3628   ifcif 3739   {cpr 3815   <.cop 3817    e. cmpt 4266    _I cid 4493   Oncon0 4581    X. cxp 4876   ran crn 4879    o. ccom 4882    Fn wfn 5449   -->wf 5450   ` cfv 5454  (class class class)co 6081    e. cmpt2 6083   1oc1o 6717   2oc2o 6718    Er wer 6902   [cec 6903   /.cqs 6904   0cc0 8990  ..^cfzo 11135   #chash 11618  Word cword 11717   <"cs1 11719   Basecbs 13469    gsumg cgsu 13724    /.s cqus 13731   Grpcgrp 14685   inv gcminusg 14686   MndHom cmhm 14736  freeMndcfrmd 14792  varFMndcvrmd 14793    GrpHom cghm 15003   ~FG cefg 15338  freeGrpcfrgp 15339  varFGrpcvrgp 15340
This theorem is referenced by:  frgpup3  15410
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-ot 3824  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-ec 6907  df-qs 6911  df-map 7020  df-pm 7021  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-fz 11044  df-fzo 11136  df-seq 11324  df-hash 11619  df-word 11723  df-concat 11724  df-s1 11725  df-substr 11726  df-splice 11727  df-reverse 11728  df-s2 11812  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-0g 13727  df-gsum 13728  df-imas 13734  df-divs 13735  df-mnd 14690  df-mhm 14738  df-submnd 14739  df-frmd 14794  df-vrmd 14795  df-grp 14812  df-minusg 14813  df-ghm 15004  df-efg 15341  df-frgp 15342  df-vrgp 15343
  Copyright terms: Public domain W3C validator