MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpuptinv Structured version   Unicode version

Theorem frgpuptinv 15395
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b  |-  B  =  ( Base `  H
)
frgpup.n  |-  N  =  ( inv g `  H )
frgpup.t  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
frgpup.h  |-  ( ph  ->  H  e.  Grp )
frgpup.i  |-  ( ph  ->  I  e.  V )
frgpup.a  |-  ( ph  ->  F : I --> B )
frgpuptinv.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
Assertion
Ref Expression
frgpuptinv  |-  ( (
ph  /\  A  e.  ( I  X.  2o ) )  ->  ( T `  ( M `  A ) )  =  ( N `  ( T `  A )
) )
Distinct variable groups:    y, z, A    y, F, z    y, N, z    y, B, z    ph, y, z    y, I, z
Allowed substitution hints:    T( y, z)    H( y, z)    M( y, z)    V( y, z)

Proof of Theorem frgpuptinv
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxp2 4888 . . 3  |-  ( A  e.  ( I  X.  2o )  <->  E. a  e.  I  E. b  e.  2o  A  =  <. a ,  b >. )
2 frgpuptinv.m . . . . . . . . . 10  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
32efgmval 15336 . . . . . . . . 9  |-  ( ( a  e.  I  /\  b  e.  2o )  ->  ( a M b )  =  <. a ,  ( 1o  \ 
b ) >. )
43adantl 453 . . . . . . . 8  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( a M b )  =  <. a ,  ( 1o  \ 
b ) >. )
54fveq2d 5724 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( T `  (
a M b ) )  =  ( T `
 <. a ,  ( 1o  \  b )
>. ) )
6 df-ov 6076 . . . . . . 7  |-  ( a T ( 1o  \ 
b ) )  =  ( T `  <. a ,  ( 1o  \ 
b ) >. )
75, 6syl6eqr 2485 . . . . . 6  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( T `  (
a M b ) )  =  ( a T ( 1o  \ 
b ) ) )
8 elpri 3826 . . . . . . . . 9  |-  ( b  e.  { (/) ,  1o }  ->  ( b  =  (/)  \/  b  =  1o ) )
9 df2o3 6729 . . . . . . . . 9  |-  2o  =  { (/) ,  1o }
108, 9eleq2s 2527 . . . . . . . 8  |-  ( b  e.  2o  ->  (
b  =  (/)  \/  b  =  1o ) )
11 simpr 448 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  I )  ->  a  e.  I )
12 1on 6723 . . . . . . . . . . . . . . 15  |-  1o  e.  On
1312elexi 2957 . . . . . . . . . . . . . 14  |-  1o  e.  _V
1413prid2 3905 . . . . . . . . . . . . 13  |-  1o  e.  {
(/) ,  1o }
1514, 9eleqtrri 2508 . . . . . . . . . . . 12  |-  1o  e.  2o
16 1n0 6731 . . . . . . . . . . . . . . . 16  |-  1o  =/=  (/)
17 neeq1 2606 . . . . . . . . . . . . . . . 16  |-  ( z  =  1o  ->  (
z  =/=  (/)  <->  1o  =/=  (/) ) )
1816, 17mpbiri 225 . . . . . . . . . . . . . . 15  |-  ( z  =  1o  ->  z  =/=  (/) )
19 ifnefalse 3739 . . . . . . . . . . . . . . 15  |-  ( z  =/=  (/)  ->  if (
z  =  (/) ,  ( F `  y ) ,  ( N `  ( F `  y ) ) )  =  ( N `  ( F `
 y ) ) )
2018, 19syl 16 . . . . . . . . . . . . . 14  |-  ( z  =  1o  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  =  ( N `  ( F `  y ) ) )
21 fveq2 5720 . . . . . . . . . . . . . . 15  |-  ( y  =  a  ->  ( F `  y )  =  ( F `  a ) )
2221fveq2d 5724 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  ( N `  ( F `  y ) )  =  ( N `  ( F `  a )
) )
2320, 22sylan9eqr 2489 . . . . . . . . . . . . 13  |-  ( ( y  =  a  /\  z  =  1o )  ->  if ( z  =  (/) ,  ( F `  y ) ,  ( N `  ( F `
 y ) ) )  =  ( N `
 ( F `  a ) ) )
24 frgpup.t . . . . . . . . . . . . 13  |-  T  =  ( y  e.  I ,  z  e.  2o  |->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) ) )
25 fvex 5734 . . . . . . . . . . . . 13  |-  ( N `
 ( F `  a ) )  e. 
_V
2623, 24, 25ovmpt2a 6196 . . . . . . . . . . . 12  |-  ( ( a  e.  I  /\  1o  e.  2o )  -> 
( a T 1o )  =  ( N `
 ( F `  a ) ) )
2711, 15, 26sylancl 644 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  I )  ->  (
a T 1o )  =  ( N `  ( F `  a ) ) )
28 0ex 4331 . . . . . . . . . . . . . . 15  |-  (/)  e.  _V
2928prid1 3904 . . . . . . . . . . . . . 14  |-  (/)  e.  { (/)
,  1o }
3029, 9eleqtrri 2508 . . . . . . . . . . . . 13  |-  (/)  e.  2o
31 iftrue 3737 . . . . . . . . . . . . . . 15  |-  ( z  =  (/)  ->  if ( z  =  (/) ,  ( F `  y ) ,  ( N `  ( F `  y ) ) )  =  ( F `  y ) )
3231, 21sylan9eqr 2489 . . . . . . . . . . . . . 14  |-  ( ( y  =  a  /\  z  =  (/) )  ->  if ( z  =  (/) ,  ( F `  y
) ,  ( N `
 ( F `  y ) ) )  =  ( F `  a ) )
33 fvex 5734 . . . . . . . . . . . . . 14  |-  ( F `
 a )  e. 
_V
3432, 24, 33ovmpt2a 6196 . . . . . . . . . . . . 13  |-  ( ( a  e.  I  /\  (/) 
e.  2o )  -> 
( a T (/) )  =  ( F `  a ) )
3511, 30, 34sylancl 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  I )  ->  (
a T (/) )  =  ( F `  a
) )
3635fveq2d 5724 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  I )  ->  ( N `  ( a T (/) ) )  =  ( N `  ( F `  a )
) )
3727, 36eqtr4d 2470 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  I )  ->  (
a T 1o )  =  ( N `  ( a T (/) ) ) )
38 difeq2 3451 . . . . . . . . . . . . 13  |-  ( b  =  (/)  ->  ( 1o 
\  b )  =  ( 1o  \  (/) ) )
39 dif0 3690 . . . . . . . . . . . . 13  |-  ( 1o 
\  (/) )  =  1o
4038, 39syl6eq 2483 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  ( 1o 
\  b )  =  1o )
4140oveq2d 6089 . . . . . . . . . . 11  |-  ( b  =  (/)  ->  ( a T ( 1o  \ 
b ) )  =  ( a T 1o ) )
42 oveq2 6081 . . . . . . . . . . . 12  |-  ( b  =  (/)  ->  ( a T b )  =  ( a T (/) ) )
4342fveq2d 5724 . . . . . . . . . . 11  |-  ( b  =  (/)  ->  ( N `
 ( a T b ) )  =  ( N `  (
a T (/) ) ) )
4441, 43eqeq12d 2449 . . . . . . . . . 10  |-  ( b  =  (/)  ->  ( ( a T ( 1o 
\  b ) )  =  ( N `  ( a T b ) )  <->  ( a T 1o )  =  ( N `  ( a T (/) ) ) ) )
4537, 44syl5ibrcom 214 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  I )  ->  (
b  =  (/)  ->  (
a T ( 1o 
\  b ) )  =  ( N `  ( a T b ) ) ) )
4637fveq2d 5724 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  I )  ->  ( N `  ( a T 1o ) )  =  ( N `  ( N `  ( a T (/) ) ) ) )
47 frgpup.h . . . . . . . . . . . . 13  |-  ( ph  ->  H  e.  Grp )
4847adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  I )  ->  H  e.  Grp )
49 frgpup.a . . . . . . . . . . . . . 14  |-  ( ph  ->  F : I --> B )
5049ffvelrnda 5862 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  I )  ->  ( F `  a )  e.  B )
5135, 50eqeltrd 2509 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  I )  ->  (
a T (/) )  e.  B )
52 frgpup.b . . . . . . . . . . . . 13  |-  B  =  ( Base `  H
)
53 frgpup.n . . . . . . . . . . . . 13  |-  N  =  ( inv g `  H )
5452, 53grpinvinv 14850 . . . . . . . . . . . 12  |-  ( ( H  e.  Grp  /\  ( a T (/) )  e.  B )  ->  ( N `  ( N `  ( a T (/) ) ) )  =  ( a T
(/) ) )
5548, 51, 54syl2anc 643 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  I )  ->  ( N `  ( N `  ( a T (/) ) ) )  =  ( a T (/) ) )
5646, 55eqtr2d 2468 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  I )  ->  (
a T (/) )  =  ( N `  (
a T 1o ) ) )
57 difeq2 3451 . . . . . . . . . . . . 13  |-  ( b  =  1o  ->  ( 1o  \  b )  =  ( 1o  \  1o ) )
58 difid 3688 . . . . . . . . . . . . 13  |-  ( 1o 
\  1o )  =  (/)
5957, 58syl6eq 2483 . . . . . . . . . . . 12  |-  ( b  =  1o  ->  ( 1o  \  b )  =  (/) )
6059oveq2d 6089 . . . . . . . . . . 11  |-  ( b  =  1o  ->  (
a T ( 1o 
\  b ) )  =  ( a T
(/) ) )
61 oveq2 6081 . . . . . . . . . . . 12  |-  ( b  =  1o  ->  (
a T b )  =  ( a T 1o ) )
6261fveq2d 5724 . . . . . . . . . . 11  |-  ( b  =  1o  ->  ( N `  ( a T b ) )  =  ( N `  ( a T 1o ) ) )
6360, 62eqeq12d 2449 . . . . . . . . . 10  |-  ( b  =  1o  ->  (
( a T ( 1o  \  b ) )  =  ( N `
 ( a T b ) )  <->  ( a T (/) )  =  ( N `  ( a T 1o ) ) ) )
6456, 63syl5ibrcom 214 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  I )  ->  (
b  =  1o  ->  ( a T ( 1o 
\  b ) )  =  ( N `  ( a T b ) ) ) )
6545, 64jaod 370 . . . . . . . 8  |-  ( (
ph  /\  a  e.  I )  ->  (
( b  =  (/)  \/  b  =  1o )  ->  ( a T ( 1o  \  b
) )  =  ( N `  ( a T b ) ) ) )
6610, 65syl5 30 . . . . . . 7  |-  ( (
ph  /\  a  e.  I )  ->  (
b  e.  2o  ->  ( a T ( 1o 
\  b ) )  =  ( N `  ( a T b ) ) ) )
6766impr 603 . . . . . 6  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( a T ( 1o  \  b ) )  =  ( N `
 ( a T b ) ) )
687, 67eqtrd 2467 . . . . 5  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( T `  (
a M b ) )  =  ( N `
 ( a T b ) ) )
69 fveq2 5720 . . . . . . . 8  |-  ( A  =  <. a ,  b
>.  ->  ( M `  A )  =  ( M `  <. a ,  b >. )
)
70 df-ov 6076 . . . . . . . 8  |-  ( a M b )  =  ( M `  <. a ,  b >. )
7169, 70syl6eqr 2485 . . . . . . 7  |-  ( A  =  <. a ,  b
>.  ->  ( M `  A )  =  ( a M b ) )
7271fveq2d 5724 . . . . . 6  |-  ( A  =  <. a ,  b
>.  ->  ( T `  ( M `  A ) )  =  ( T `
 ( a M b ) ) )
73 fveq2 5720 . . . . . . . 8  |-  ( A  =  <. a ,  b
>.  ->  ( T `  A )  =  ( T `  <. a ,  b >. )
)
74 df-ov 6076 . . . . . . . 8  |-  ( a T b )  =  ( T `  <. a ,  b >. )
7573, 74syl6eqr 2485 . . . . . . 7  |-  ( A  =  <. a ,  b
>.  ->  ( T `  A )  =  ( a T b ) )
7675fveq2d 5724 . . . . . 6  |-  ( A  =  <. a ,  b
>.  ->  ( N `  ( T `  A ) )  =  ( N `
 ( a T b ) ) )
7772, 76eqeq12d 2449 . . . . 5  |-  ( A  =  <. a ,  b
>.  ->  ( ( T `
 ( M `  A ) )  =  ( N `  ( T `  A )
)  <->  ( T `  ( a M b ) )  =  ( N `  ( a T b ) ) ) )
7868, 77syl5ibrcom 214 . . . 4  |-  ( (
ph  /\  ( a  e.  I  /\  b  e.  2o ) )  -> 
( A  =  <. a ,  b >.  ->  ( T `  ( M `  A ) )  =  ( N `  ( T `  A )
) ) )
7978rexlimdvva 2829 . . 3  |-  ( ph  ->  ( E. a  e.  I  E. b  e.  2o  A  =  <. a ,  b >.  ->  ( T `  ( M `  A ) )  =  ( N `  ( T `  A )
) ) )
801, 79syl5bi 209 . 2  |-  ( ph  ->  ( A  e.  ( I  X.  2o )  ->  ( T `  ( M `  A ) )  =  ( N `
 ( T `  A ) ) ) )
8180imp 419 1  |-  ( (
ph  /\  A  e.  ( I  X.  2o ) )  ->  ( T `  ( M `  A ) )  =  ( N `  ( T `  A )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   E.wrex 2698    \ cdif 3309   (/)c0 3620   ifcif 3731   {cpr 3807   <.cop 3809   Oncon0 4573    X. cxp 4868   -->wf 5442   ` cfv 5446  (class class class)co 6073    e. cmpt2 6075   1oc1o 6709   2oc2o 6710   Basecbs 13461   Grpcgrp 14677   inv gcminusg 14678
This theorem is referenced by:  frgpuplem  15396
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-suc 4579  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-riota 6541  df-1o 6716  df-2o 6717  df-0g 13719  df-mnd 14682  df-grp 14804  df-minusg 14805
  Copyright terms: Public domain W3C validator