MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpval Unicode version

Theorem frgpval 15067
Description: Value of the free group construction. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
frgpval.m  |-  G  =  (freeGrp `  I )
frgpval.b  |-  M  =  (freeMnd `  ( I  X.  2o ) )
frgpval.r  |-  .~  =  ( ~FG  `  I )
Assertion
Ref Expression
frgpval  |-  ( I  e.  V  ->  G  =  ( M  /.s  .~  )
)

Proof of Theorem frgpval
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 frgpval.m . 2  |-  G  =  (freeGrp `  I )
2 elex 2796 . . 3  |-  ( I  e.  V  ->  I  e.  _V )
3 xpeq1 4703 . . . . . . 7  |-  ( i  =  I  ->  (
i  X.  2o )  =  ( I  X.  2o ) )
43fveq2d 5529 . . . . . 6  |-  ( i  =  I  ->  (freeMnd `  ( i  X.  2o ) )  =  (freeMnd `  ( I  X.  2o ) ) )
5 frgpval.b . . . . . 6  |-  M  =  (freeMnd `  ( I  X.  2o ) )
64, 5syl6eqr 2333 . . . . 5  |-  ( i  =  I  ->  (freeMnd `  ( i  X.  2o ) )  =  M )
7 fveq2 5525 . . . . . 6  |-  ( i  =  I  ->  ( ~FG  `  i
)  =  ( ~FG  `  I
) )
8 frgpval.r . . . . . 6  |-  .~  =  ( ~FG  `  I )
97, 8syl6eqr 2333 . . . . 5  |-  ( i  =  I  ->  ( ~FG  `  i
)  =  .~  )
106, 9oveq12d 5876 . . . 4  |-  ( i  =  I  ->  (
(freeMnd `  ( i  X.  2o ) )  /.s  ( ~FG  `  i
) )  =  ( M  /.s 
.~  ) )
11 df-frgp 15019 . . . 4  |- freeGrp  =  ( i  e.  _V  |->  ( (freeMnd `  ( i  X.  2o ) )  /.s  ( ~FG  `  i
) ) )
12 ovex 5883 . . . 4  |-  ( M 
/.s  .~  )  e.  _V
1310, 11, 12fvmpt 5602 . . 3  |-  ( I  e.  _V  ->  (freeGrp `  I )  =  ( M  /.s 
.~  ) )
142, 13syl 15 . 2  |-  ( I  e.  V  ->  (freeGrp `  I )  =  ( M  /.s 
.~  ) )
151, 14syl5eq 2327 1  |-  ( I  e.  V  ->  G  =  ( M  /.s  .~  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   _Vcvv 2788    X. cxp 4687   ` cfv 5255  (class class class)co 5858   2oc2o 6473    /.s cqus 13408  freeMndcfrmd 14469   ~FG cefg 15015  freeGrpcfrgp 15016
This theorem is referenced by:  frgp0  15069  frgpeccl  15070  frgpadd  15072  frgpupf  15082  frgpup1  15084  frgpup3lem  15086  frgpnabllem2  15162
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-frgp 15019
  Copyright terms: Public domain W3C validator