MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fri Unicode version

Theorem fri 4355
Description: Property of well-founded relation (one direction of definition). (Contributed by NM, 18-Mar-1997.)
Assertion
Ref Expression
fri  |-  ( ( ( B  e.  C  /\  R  Fr  A
)  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
Distinct variable groups:    x, y, A    x, B, y    x, R, y
Allowed substitution hints:    C( x, y)

Proof of Theorem fri
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-fr 4352 . . 3  |-  ( R  Fr  A  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y R x ) )
2 sseq1 3199 . . . . . 6  |-  ( z  =  B  ->  (
z  C_  A  <->  B  C_  A
) )
3 neeq1 2454 . . . . . 6  |-  ( z  =  B  ->  (
z  =/=  (/)  <->  B  =/=  (/) ) )
42, 3anbi12d 691 . . . . 5  |-  ( z  =  B  ->  (
( z  C_  A  /\  z  =/=  (/) )  <->  ( B  C_  A  /\  B  =/=  (/) ) ) )
5 raleq 2736 . . . . . 6  |-  ( z  =  B  ->  ( A. y  e.  z  -.  y R x  <->  A. y  e.  B  -.  y R x ) )
65rexeqbi1dv 2745 . . . . 5  |-  ( z  =  B  ->  ( E. x  e.  z  A. y  e.  z  -.  y R x  <->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
74, 6imbi12d 311 . . . 4  |-  ( z  =  B  ->  (
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y R x )  <-> 
( ( B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) ) )
87spcgv 2868 . . 3  |-  ( B  e.  C  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y R x )  -> 
( ( B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) ) )
91, 8syl5bi 208 . 2  |-  ( B  e.  C  ->  ( R  Fr  A  ->  ( ( B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) ) )
109imp31 421 1  |-  ( ( ( B  e.  C  /\  R  Fr  A
)  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    C_ wss 3152   (/)c0 3455   class class class wbr 4023    Fr wfr 4349
This theorem is referenced by:  frc  4359  fr2nr  4371  frminex  4373  wereu  4389  wereu2  4390  fr3nr  4571  frfi  7102  fimax2g  7103  wofib  7260  wemapso  7266  wemapso2  7267  noinfep  7360  noinfepOLD  7361  cflim2  7889  isfin1-3  8012  fin12  8039  fpwwe2lem12  8263  fpwwe2lem13  8264  fpwwe2  8265  frinfm  26416  fdc  26455  fnwe2lem2  27148  bnj110  28890
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-v 2790  df-in 3159  df-ss 3166  df-fr 4352
  Copyright terms: Public domain W3C validator