MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fri Structured version   Unicode version

Theorem fri 4536
Description: Property of well-founded relation (one direction of definition). (Contributed by NM, 18-Mar-1997.)
Assertion
Ref Expression
fri  |-  ( ( ( B  e.  C  /\  R  Fr  A
)  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
Distinct variable groups:    x, y, A    x, B, y    x, R, y
Allowed substitution hints:    C( x, y)

Proof of Theorem fri
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-fr 4533 . . 3  |-  ( R  Fr  A  <->  A. z
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y R x ) )
2 sseq1 3361 . . . . . 6  |-  ( z  =  B  ->  (
z  C_  A  <->  B  C_  A
) )
3 neeq1 2606 . . . . . 6  |-  ( z  =  B  ->  (
z  =/=  (/)  <->  B  =/=  (/) ) )
42, 3anbi12d 692 . . . . 5  |-  ( z  =  B  ->  (
( z  C_  A  /\  z  =/=  (/) )  <->  ( B  C_  A  /\  B  =/=  (/) ) ) )
5 raleq 2896 . . . . . 6  |-  ( z  =  B  ->  ( A. y  e.  z  -.  y R x  <->  A. y  e.  B  -.  y R x ) )
65rexeqbi1dv 2905 . . . . 5  |-  ( z  =  B  ->  ( E. x  e.  z  A. y  e.  z  -.  y R x  <->  E. x  e.  B  A. y  e.  B  -.  y R x ) )
74, 6imbi12d 312 . . . 4  |-  ( z  =  B  ->  (
( ( z  C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y R x )  <-> 
( ( B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) ) )
87spcgv 3028 . . 3  |-  ( B  e.  C  ->  ( A. z ( ( z 
C_  A  /\  z  =/=  (/) )  ->  E. x  e.  z  A. y  e.  z  -.  y R x )  -> 
( ( B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) ) )
91, 8syl5bi 209 . 2  |-  ( B  e.  C  ->  ( R  Fr  A  ->  ( ( B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x ) ) )
109imp31 422 1  |-  ( ( ( B  e.  C  /\  R  Fr  A
)  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. x  e.  B  A. y  e.  B  -.  y R x )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    C_ wss 3312   (/)c0 3620   class class class wbr 4204    Fr wfr 4530
This theorem is referenced by:  frc  4540  fr2nr  4552  frminex  4554  wereu  4570  wereu2  4571  fr3nr  4752  frfi  7344  fimax2g  7345  wofib  7506  wemapso  7512  wemapso2  7513  noinfep  7606  noinfepOLD  7607  cflim2  8135  isfin1-3  8258  fin12  8285  fpwwe2lem12  8508  fpwwe2lem13  8509  fpwwe2  8510  frinfm  26428  fdc  26440  fnwe2lem2  27117  bnj110  29166
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-v 2950  df-in 3319  df-ss 3326  df-fr 4533
  Copyright terms: Public domain W3C validator