Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frind Unicode version

Theorem frind 23654
Description: The principle of founded induction. Theorem 4.4 of Don Monk's notes (see frmin 23653). This principle states that if  B is a subclass of a founded class  A with the property that every element of  B whose initial segment is included in  A is is itself equal to  A. Compare wfi 23618 and tfi 4644, which are special cases of this theorem that do not require the axiom of infinity to prove. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frind  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  A  =  B )
Distinct variable groups:    y, A    y, B    y, R

Proof of Theorem frind
StepHypRef Expression
1 ssdif0 3513 . . . . . . 7  |-  ( A 
C_  B  <->  ( A  \  B )  =  (/) )
21necon3bbii 2477 . . . . . 6  |-  ( -.  A  C_  B  <->  ( A  \  B )  =/=  (/) )
3 difss 3303 . . . . . . 7  |-  ( A 
\  B )  C_  A
4 frmin 23653 . . . . . . . . 9  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( ( A  \  B )  C_  A  /\  ( A  \  B
)  =/=  (/) ) )  ->  E. y  e.  ( A  \  B )
Pred ( R , 
( A  \  B
) ,  y )  =  (/) )
5 eldif 3162 . . . . . . . . . . . . 13  |-  ( y  e.  ( A  \  B )  <->  ( y  e.  A  /\  -.  y  e.  B ) )
65anbi1i 676 . . . . . . . . . . . 12  |-  ( ( y  e.  ( A 
\  B )  /\  Pred ( R ,  ( A  \  B ) ,  y )  =  (/) )  <->  ( ( y  e.  A  /\  -.  y  e.  B )  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) ) )
7 anass 630 . . . . . . . . . . . 12  |-  ( ( ( y  e.  A  /\  -.  y  e.  B
)  /\  Pred ( R ,  ( A  \  B ) ,  y )  =  (/) )  <->  ( y  e.  A  /\  ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) ) ) )
8 ancom 437 . . . . . . . . . . . . . 14  |-  ( ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) )  <->  ( Pred ( R ,  ( A 
\  B ) ,  y )  =  (/)  /\ 
-.  y  e.  B
) )
9 indif2 3412 . . . . . . . . . . . . . . . . . 18  |-  ( ( `' R " { y } )  i^i  ( A  \  B ) )  =  ( ( ( `' R " { y } )  i^i  A
)  \  B )
10 df-pred 23579 . . . . . . . . . . . . . . . . . . 19  |-  Pred ( R ,  ( A  \  B ) ,  y )  =  ( ( A  \  B )  i^i  ( `' R " { y } ) )
11 incom 3361 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  \  B )  i^i  ( `' R " { y } ) )  =  ( ( `' R " { y } )  i^i  ( A  \  B ) )
1210, 11eqtri 2303 . . . . . . . . . . . . . . . . . 18  |-  Pred ( R ,  ( A  \  B ) ,  y )  =  ( ( `' R " { y } )  i^i  ( A  \  B ) )
13 df-pred 23579 . . . . . . . . . . . . . . . . . . . 20  |-  Pred ( R ,  A , 
y )  =  ( A  i^i  ( `' R " { y } ) )
14 incom 3361 . . . . . . . . . . . . . . . . . . . 20  |-  ( A  i^i  ( `' R " { y } ) )  =  ( ( `' R " { y } )  i^i  A
)
1513, 14eqtri 2303 . . . . . . . . . . . . . . . . . . 19  |-  Pred ( R ,  A , 
y )  =  ( ( `' R " { y } )  i^i  A )
1615difeq1i 3290 . . . . . . . . . . . . . . . . . 18  |-  ( Pred ( R ,  A ,  y )  \  B )  =  ( ( ( `' R " { y } )  i^i  A )  \  B )
179, 12, 163eqtr4i 2313 . . . . . . . . . . . . . . . . 17  |-  Pred ( R ,  ( A  \  B ) ,  y )  =  ( Pred ( R ,  A ,  y )  \  B )
1817eqeq1i 2290 . . . . . . . . . . . . . . . 16  |-  ( Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<->  ( Pred ( R ,  A ,  y )  \  B )  =  (/) )
19 ssdif0 3513 . . . . . . . . . . . . . . . 16  |-  ( Pred ( R ,  A ,  y )  C_  B 
<->  ( Pred ( R ,  A ,  y )  \  B )  =  (/) )
2018, 19bitr4i 243 . . . . . . . . . . . . . . 15  |-  ( Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<-> 
Pred ( R ,  A ,  y )  C_  B )
2120anbi1i 676 . . . . . . . . . . . . . 14  |-  ( (
Pred ( R , 
( A  \  B
) ,  y )  =  (/)  /\  -.  y  e.  B )  <->  ( Pred ( R ,  A , 
y )  C_  B  /\  -.  y  e.  B
) )
228, 21bitri 240 . . . . . . . . . . . . 13  |-  ( ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) )  <->  ( Pred ( R ,  A , 
y )  C_  B  /\  -.  y  e.  B
) )
2322anbi2i 675 . . . . . . . . . . . 12  |-  ( ( y  e.  A  /\  ( -.  y  e.  B  /\  Pred ( R , 
( A  \  B
) ,  y )  =  (/) ) )  <->  ( y  e.  A  /\  ( Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B ) ) )
246, 7, 233bitri 262 . . . . . . . . . . 11  |-  ( ( y  e.  ( A 
\  B )  /\  Pred ( R ,  ( A  \  B ) ,  y )  =  (/) )  <->  ( y  e.  A  /\  ( Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B ) ) )
2524rexbii2 2572 . . . . . . . . . 10  |-  ( E. y  e.  ( A 
\  B ) Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<->  E. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B ) )
26 rexanali 2589 . . . . . . . . . 10  |-  ( E. y  e.  A  (
Pred ( R ,  A ,  y )  C_  B  /\  -.  y  e.  B )  <->  -.  A. y  e.  A  ( Pred ( R ,  A , 
y )  C_  B  ->  y  e.  B ) )
2725, 26bitri 240 . . . . . . . . 9  |-  ( E. y  e.  ( A 
\  B ) Pred ( R ,  ( A  \  B ) ,  y )  =  (/) 
<->  -.  A. y  e.  A  ( Pred ( R ,  A , 
y )  C_  B  ->  y  e.  B ) )
284, 27sylib 188 . . . . . . . 8  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( ( A  \  B )  C_  A  /\  ( A  \  B
)  =/=  (/) ) )  ->  -.  A. y  e.  A  ( Pred ( R ,  A , 
y )  C_  B  ->  y  e.  B ) )
2928ex 423 . . . . . . 7  |-  ( ( R  Fr  A  /\  R Se  A )  ->  (
( ( A  \  B )  C_  A  /\  ( A  \  B
)  =/=  (/) )  ->  -.  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )
303, 29mpani 657 . . . . . 6  |-  ( ( R  Fr  A  /\  R Se  A )  ->  (
( A  \  B
)  =/=  (/)  ->  -.  A. y  e.  A  (
Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )
312, 30syl5bi 208 . . . . 5  |-  ( ( R  Fr  A  /\  R Se  A )  ->  ( -.  A  C_  B  ->  -.  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )
3231con4d 97 . . . 4  |-  ( ( R  Fr  A  /\  R Se  A )  ->  ( A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B )  ->  A  C_  B ) )
3332imp 418 . . 3  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) )  ->  A  C_  B )
3433adantrl 696 . 2  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  A  C_  B
)
35 simprl 732 . 2  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  B  C_  A
)
3634, 35eqssd 3196 1  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640    Fr wfr 4349   Se wse 4350   `'ccnv 4688   "cima 4692   Predcpred 23578
This theorem is referenced by:  frindi  23655  frinsg  23656
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-pred 23579  df-trpred 23632
  Copyright terms: Public domain W3C validator