Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frindi Unicode version

Theorem frindi 25270
Description: The principle of founded induction. Theorem 4.4 of Don Monk's notes (see frmin 25268). This principle states that if  B is a subclass of a founded class  A with the property that every element of  B whose initial segment is included in  A is itself equal to  A. (Contributed by Scott Fenton, 6-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
frind.1  |-  R  Fr  A
frind.2  |-  R Se  A
Assertion
Ref Expression
frindi  |-  ( ( B  C_  A  /\  A. y  e.  A  (
Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) )  ->  A  =  B )
Distinct variable groups:    y, A    y, B    y, R

Proof of Theorem frindi
StepHypRef Expression
1 frind.1 . 2  |-  R  Fr  A
2 frind.2 . 2  |-  R Se  A
3 frind 25269 . 2  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( B  C_  A  /\  A. y  e.  A  ( Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) ) )  ->  A  =  B )
41, 2, 3mpanl12 664 1  |-  ( ( B  C_  A  /\  A. y  e.  A  (
Pred ( R ,  A ,  y )  C_  B  ->  y  e.  B ) )  ->  A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2651    C_ wss 3265    Fr wfr 4481   Se wse 4482   Predcpred 25193
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-recs 6571  df-rdg 6606  df-pred 25194  df-trpred 25247
  Copyright terms: Public domain W3C validator