Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmbas Unicode version

Theorem frlmbas 27326
Description: Base set of the free module. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Hypotheses
Ref Expression
frlmval.f  |-  F  =  ( R freeLMod  I )
frlmbas.n  |-  N  =  ( Base `  R
)
frlmbas.z  |-  .0.  =  ( 0g `  R )
frlmbas.b  |-  B  =  { k  e.  ( N  ^m  I )  |  ( `' k
" ( _V  \  {  .0.  } ) )  e.  Fin }
Assertion
Ref Expression
frlmbas  |-  ( ( R  e.  V  /\  I  e.  W )  ->  B  =  ( Base `  F ) )
Distinct variable groups:    k, N    R, k    k, I    k, W    k, V    .0. , k
Allowed substitution hints:    B( k)    F( k)

Proof of Theorem frlmbas
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvex 5555 . . . . 5  |-  (ringLMod `  R
)  e.  _V
2 fnconstg 5445 . . . . 5  |-  ( (ringLMod `  R )  e.  _V  ->  ( I  X.  {
(ringLMod `  R ) } )  Fn  I )
31, 2ax-mp 8 . . . 4  |-  ( I  X.  { (ringLMod `  R
) } )  Fn  I
4 eqid 2296 . . . . 5  |-  ( R
X_s ( I  X.  {
(ringLMod `  R ) } ) )  =  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) )
5 eqid 2296 . . . . 5  |-  { k  e.  ( Base `  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) ) )  |  dom  ( k  \ 
( 0g  o.  (
I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin }  =  { k  e.  ( Base `  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) ) )  |  dom  ( k  \ 
( 0g  o.  (
I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin }
64, 5dsmmbas2 27306 . . . 4  |-  ( ( ( I  X.  {
(ringLMod `  R ) } )  Fn  I  /\  I  e.  W )  ->  { k  e.  (
Base `  ( R X_s ( I  X.  { (ringLMod `  R ) } ) ) )  |  dom  ( k  \  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin }  =  ( Base `  ( R  (+)m 
( I  X.  {
(ringLMod `  R ) } ) ) ) )
73, 6mpan 651 . . 3  |-  ( I  e.  W  ->  { k  e.  ( Base `  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) ) )  |  dom  ( k  \ 
( 0g  o.  (
I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin }  =  ( Base `  ( R  (+)m  ( I  X.  {
(ringLMod `  R ) } ) ) ) )
87adantl 452 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { k  e.  (
Base `  ( R X_s ( I  X.  { (ringLMod `  R ) } ) ) )  |  dom  ( k  \  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin }  =  ( Base `  ( R  (+)m 
( I  X.  {
(ringLMod `  R ) } ) ) ) )
9 frlmbas.b . . 3  |-  B  =  { k  e.  ( N  ^m  I )  |  ( `' k
" ( _V  \  {  .0.  } ) )  e.  Fin }
10 fvco2 5610 . . . . . . . . . . . 12  |-  ( ( ( I  X.  {
(ringLMod `  R ) } )  Fn  I  /\  x  e.  I )  ->  ( ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) `  x )  =  ( 0g `  ( ( I  X.  { (ringLMod `  R ) } ) `  x
) ) )
113, 10mpan 651 . . . . . . . . . . 11  |-  ( x  e.  I  ->  (
( 0g  o.  (
I  X.  { (ringLMod `  R ) } ) ) `  x )  =  ( 0g `  ( ( I  X.  { (ringLMod `  R ) } ) `  x
) ) )
1211adantl 452 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  k  e.  ( N  ^m  I
) )  /\  x  e.  I )  ->  (
( 0g  o.  (
I  X.  { (ringLMod `  R ) } ) ) `  x )  =  ( 0g `  ( ( I  X.  { (ringLMod `  R ) } ) `  x
) ) )
131fvconst2 5745 . . . . . . . . . . . . 13  |-  ( x  e.  I  ->  (
( I  X.  {
(ringLMod `  R ) } ) `  x )  =  (ringLMod `  R
) )
1413adantl 452 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  k  e.  ( N  ^m  I
) )  /\  x  e.  I )  ->  (
( I  X.  {
(ringLMod `  R ) } ) `  x )  =  (ringLMod `  R
) )
1514fveq2d 5545 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  k  e.  ( N  ^m  I
) )  /\  x  e.  I )  ->  ( 0g `  ( ( I  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( 0g `  (ringLMod `  R ) ) )
16 frlmbas.z . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  R )
17 rlm0 15966 . . . . . . . . . . . 12  |-  ( 0g
`  R )  =  ( 0g `  (ringLMod `  R ) )
1816, 17eqtri 2316 . . . . . . . . . . 11  |-  .0.  =  ( 0g `  (ringLMod `  R
) )
1915, 18syl6eqr 2346 . . . . . . . . . 10  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  k  e.  ( N  ^m  I
) )  /\  x  e.  I )  ->  ( 0g `  ( ( I  X.  { (ringLMod `  R
) } ) `  x ) )  =  .0.  )
2012, 19eqtrd 2328 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  k  e.  ( N  ^m  I
) )  /\  x  e.  I )  ->  (
( 0g  o.  (
I  X.  { (ringLMod `  R ) } ) ) `  x )  =  .0.  )
2120neeq2d 2473 . . . . . . . 8  |-  ( ( ( ( R  e.  V  /\  I  e.  W )  /\  k  e.  ( N  ^m  I
) )  /\  x  e.  I )  ->  (
( k `  x
)  =/=  ( ( 0g  o.  ( I  X.  { (ringLMod `  R
) } ) ) `
 x )  <->  ( k `  x )  =/=  .0.  ) )
2221rabbidva 2792 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  k  e.  ( N  ^m  I ) )  ->  { x  e.  I  |  (
k `  x )  =/=  ( ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) `  x ) }  =  { x  e.  I  |  (
k `  x )  =/=  .0.  } )
23 frlmbas.n . . . . . . . . . . . . 13  |-  N  =  ( Base `  R
)
24 fvex 5555 . . . . . . . . . . . . 13  |-  ( Base `  R )  e.  _V
2523, 24eqeltri 2366 . . . . . . . . . . . 12  |-  N  e. 
_V
26 elmapg 6801 . . . . . . . . . . . 12  |-  ( ( N  e.  _V  /\  I  e.  W )  ->  ( k  e.  ( N  ^m  I )  <-> 
k : I --> N ) )
2725, 26mpan 651 . . . . . . . . . . 11  |-  ( I  e.  W  ->  (
k  e.  ( N  ^m  I )  <->  k :
I --> N ) )
2827adantl 452 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( k  e.  ( N  ^m  I )  <-> 
k : I --> N ) )
2928biimpa 470 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  k  e.  ( N  ^m  I ) )  ->  k :
I --> N )
30 ffn 5405 . . . . . . . . 9  |-  ( k : I --> N  -> 
k  Fn  I )
3129, 30syl 15 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  k  e.  ( N  ^m  I ) )  ->  k  Fn  I )
32 fn0g 14401 . . . . . . . . 9  |-  0g  Fn  _V
33 ssv 3211 . . . . . . . . 9  |-  ran  (
I  X.  { (ringLMod `  R ) } ) 
C_  _V
34 fnco 5368 . . . . . . . . 9  |-  ( ( 0g  Fn  _V  /\  ( I  X.  { (ringLMod `  R ) } )  Fn  I  /\  ran  ( I  X.  { (ringLMod `  R ) } ) 
C_  _V )  ->  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) )  Fn  I )
3532, 3, 33, 34mp3an 1277 . . . . . . . 8  |-  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) )  Fn  I
36 fndmdif 5645 . . . . . . . 8  |-  ( ( k  Fn  I  /\  ( 0g  o.  (
I  X.  { (ringLMod `  R ) } ) )  Fn  I )  ->  dom  ( k  \  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) )  =  {
x  e.  I  |  ( k `  x
)  =/=  ( ( 0g  o.  ( I  X.  { (ringLMod `  R
) } ) ) `
 x ) } )
3731, 35, 36sylancl 643 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  k  e.  ( N  ^m  I ) )  ->  dom  ( k 
\  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) )  =  {
x  e.  I  |  ( k `  x
)  =/=  ( ( 0g  o.  ( I  X.  { (ringLMod `  R
) } ) ) `
 x ) } )
38 fnniniseg2 5665 . . . . . . . 8  |-  ( k  Fn  I  ->  ( `' k " ( _V  \  {  .0.  }
) )  =  {
x  e.  I  |  ( k `  x
)  =/=  .0.  }
)
3931, 38syl 15 . . . . . . 7  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  k  e.  ( N  ^m  I ) )  ->  ( `' k " ( _V  \  {  .0.  } ) )  =  { x  e.  I  |  ( k `
 x )  =/= 
.0.  } )
4022, 37, 393eqtr4d 2338 . . . . . 6  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  k  e.  ( N  ^m  I ) )  ->  dom  ( k 
\  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) )  =  ( `' k " ( _V  \  {  .0.  }
) ) )
4140eleq1d 2362 . . . . 5  |-  ( ( ( R  e.  V  /\  I  e.  W
)  /\  k  e.  ( N  ^m  I ) )  ->  ( dom  ( k  \  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin  <->  ( `' k " ( _V  \  {  .0.  } ) )  e.  Fin ) )
4241rabbidva 2792 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { k  e.  ( N  ^m  I )  |  dom  ( k 
\  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin }  =  { k  e.  ( N  ^m  I
)  |  ( `' k " ( _V 
\  {  .0.  }
) )  e.  Fin } )
43 eqid 2296 . . . . . . . . 9  |-  ( (ringLMod `  R )  ^s  I )  =  ( (ringLMod `  R
)  ^s  I )
44 rlmbas 15964 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  (ringLMod `  R
) )
4523, 44eqtri 2316 . . . . . . . . 9  |-  N  =  ( Base `  (ringLMod `  R ) )
4643, 45pwsbas 13402 . . . . . . . 8  |-  ( ( (ringLMod `  R )  e.  _V  /\  I  e.  W )  ->  ( N  ^m  I )  =  ( Base `  (
(ringLMod `  R )  ^s  I
) ) )
471, 46mpan 651 . . . . . . 7  |-  ( I  e.  W  ->  ( N  ^m  I )  =  ( Base `  (
(ringLMod `  R )  ^s  I
) ) )
4847adantl 452 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( N  ^m  I
)  =  ( Base `  ( (ringLMod `  R
)  ^s  I ) ) )
49 eqid 2296 . . . . . . . . . . 11  |-  (Scalar `  (ringLMod `  R ) )  =  (Scalar `  (ringLMod `  R ) )
5043, 49pwsval 13401 . . . . . . . . . 10  |-  ( ( (ringLMod `  R )  e.  _V  /\  I  e.  W )  ->  (
(ringLMod `  R )  ^s  I
)  =  ( (Scalar `  (ringLMod `  R )
) X_s ( I  X.  {
(ringLMod `  R ) } ) ) )
511, 50mpan 651 . . . . . . . . 9  |-  ( I  e.  W  ->  (
(ringLMod `  R )  ^s  I
)  =  ( (Scalar `  (ringLMod `  R )
) X_s ( I  X.  {
(ringLMod `  R ) } ) ) )
5251adantl 452 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( (ringLMod `  R
)  ^s  I )  =  ( (Scalar `  (ringLMod `  R
) ) X_s ( I  X.  {
(ringLMod `  R ) } ) ) )
53 rlmsca 15968 . . . . . . . . . 10  |-  ( R  e.  V  ->  R  =  (Scalar `  (ringLMod `  R
) ) )
5453adantr 451 . . . . . . . . 9  |-  ( ( R  e.  V  /\  I  e.  W )  ->  R  =  (Scalar `  (ringLMod `  R ) ) )
5554oveq1d 5889 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) )  =  ( (Scalar `  (ringLMod `  R
) ) X_s ( I  X.  {
(ringLMod `  R ) } ) ) )
5652, 55eqtr4d 2331 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( (ringLMod `  R
)  ^s  I )  =  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) ) )
5756fveq2d 5545 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  (
(ringLMod `  R )  ^s  I
) )  =  (
Base `  ( R X_s ( I  X.  { (ringLMod `  R ) } ) ) ) )
5848, 57eqtrd 2328 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( N  ^m  I
)  =  ( Base `  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) ) ) )
59 rabeq 2795 . . . . 5  |-  ( ( N  ^m  I )  =  ( Base `  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) ) )  ->  { k  e.  ( N  ^m  I )  |  dom  ( k 
\  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin }  =  { k  e.  ( Base `  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) ) )  |  dom  ( k  \ 
( 0g  o.  (
I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin } )
6058, 59syl 15 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { k  e.  ( N  ^m  I )  |  dom  ( k 
\  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin }  =  { k  e.  ( Base `  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) ) )  |  dom  ( k  \ 
( 0g  o.  (
I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin } )
6142, 60eqtr3d 2330 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  { k  e.  ( N  ^m  I )  |  ( `' k
" ( _V  \  {  .0.  } ) )  e.  Fin }  =  { k  e.  (
Base `  ( R X_s ( I  X.  { (ringLMod `  R ) } ) ) )  |  dom  ( k  \  ( 0g  o.  ( I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin } )
629, 61syl5eq 2340 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  B  =  { k  e.  ( Base `  ( R X_s ( I  X.  {
(ringLMod `  R ) } ) ) )  |  dom  ( k  \ 
( 0g  o.  (
I  X.  { (ringLMod `  R ) } ) ) )  e.  Fin } )
63 frlmval.f . . . 4  |-  F  =  ( R freeLMod  I )
6463frlmval 27319 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  F  =  ( R 
(+)m  ( I  X.  {
(ringLMod `  R ) } ) ) )
6564fveq2d 5545 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  F
)  =  ( Base `  ( R  (+)m  ( I  X.  { (ringLMod `  R
) } ) ) ) )
668, 62, 653eqtr4d 2338 1  |-  ( ( R  e.  V  /\  I  e.  W )  ->  B  =  ( Base `  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   {crab 2560   _Vcvv 2801    \ cdif 3162    C_ wss 3165   {csn 3653    X. cxp 4703   `'ccnv 4704   dom cdm 4705   ran crn 4706   "cima 4708    o. ccom 4709    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^m cmap 6788   Fincfn 6879   Basecbs 13164  Scalarcsca 13227   X_scprds 13362    ^s cpws 13363   0gc0g 13416  ringLModcrglmod 15938    (+)m cdsmm 27300   freeLMod cfrlm 27315
This theorem is referenced by:  frlmelbas  27327  ellspd  27357  frlmpwfi  27365  islindf4  27411  matbas2  27578
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-prds 13364  df-pws 13366  df-0g 13420  df-sra 15941  df-rgmod 15942  df-dsmm 27301  df-frlm 27317
  Copyright terms: Public domain W3C validator