Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmplusgval Unicode version

Theorem frlmplusgval 27332
Description: Addition in a free module. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypotheses
Ref Expression
frlmplusgval.y  |-  Y  =  ( R freeLMod  I )
frlmplusgval.b  |-  B  =  ( Base `  Y
)
frlmplusgval.r  |-  ( ph  ->  R  e.  V )
frlmplusgval.i  |-  ( ph  ->  I  e.  W )
frlmplusgval.f  |-  ( ph  ->  F  e.  B )
frlmplusgval.g  |-  ( ph  ->  G  e.  B )
frlmplusgval.a  |-  .+  =  ( +g  `  R )
frlmplusgval.p  |-  .+b  =  ( +g  `  Y )
Assertion
Ref Expression
frlmplusgval  |-  ( ph  ->  ( F  .+b  G
)  =  ( F  o F  .+  G
) )

Proof of Theorem frlmplusgval
StepHypRef Expression
1 frlmplusgval.r . . . . . 6  |-  ( ph  ->  R  e.  V )
2 frlmplusgval.i . . . . . 6  |-  ( ph  ->  I  e.  W )
3 frlmplusgval.y . . . . . . 7  |-  Y  =  ( R freeLMod  I )
4 eqid 2296 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  Y )
53, 4frlmpws 27321 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( ( (ringLMod `  R )  ^s  I )s  ( Base `  Y
) ) )
61, 2, 5syl2anc 642 . . . . 5  |-  ( ph  ->  Y  =  ( ( (ringLMod `  R )  ^s  I )s  ( Base `  Y
) ) )
76fveq2d 5545 . . . 4  |-  ( ph  ->  ( +g  `  Y
)  =  ( +g  `  ( ( (ringLMod `  R
)  ^s  I )s  ( Base `  Y
) ) ) )
8 frlmplusgval.p . . . 4  |-  .+b  =  ( +g  `  Y )
9 fvex 5555 . . . . 5  |-  ( Base `  Y )  e.  _V
10 eqid 2296 . . . . . 6  |-  ( ( (ringLMod `  R )  ^s  I )s  ( Base `  Y
) )  =  ( ( (ringLMod `  R
)  ^s  I )s  ( Base `  Y
) )
11 eqid 2296 . . . . . 6  |-  ( +g  `  ( (ringLMod `  R
)  ^s  I ) )  =  ( +g  `  (
(ringLMod `  R )  ^s  I
) )
1210, 11ressplusg 13266 . . . . 5  |-  ( (
Base `  Y )  e.  _V  ->  ( +g  `  ( (ringLMod `  R
)  ^s  I ) )  =  ( +g  `  (
( (ringLMod `  R )  ^s  I )s  ( Base `  Y
) ) ) )
139, 12ax-mp 8 . . . 4  |-  ( +g  `  ( (ringLMod `  R
)  ^s  I ) )  =  ( +g  `  (
( (ringLMod `  R )  ^s  I )s  ( Base `  Y
) ) )
147, 8, 133eqtr4g 2353 . . 3  |-  ( ph  -> 
.+b  =  ( +g  `  ( (ringLMod `  R
)  ^s  I ) ) )
1514oveqd 5891 . 2  |-  ( ph  ->  ( F  .+b  G
)  =  ( F ( +g  `  (
(ringLMod `  R )  ^s  I
) ) G ) )
16 eqid 2296 . . 3  |-  ( (ringLMod `  R )  ^s  I )  =  ( (ringLMod `  R
)  ^s  I )
17 eqid 2296 . . 3  |-  ( Base `  ( (ringLMod `  R
)  ^s  I ) )  =  ( Base `  (
(ringLMod `  R )  ^s  I
) )
18 fvex 5555 . . . 4  |-  (ringLMod `  R
)  e.  _V
1918a1i 10 . . 3  |-  ( ph  ->  (ringLMod `  R )  e.  _V )
20 frlmplusgval.b . . . . . 6  |-  B  =  ( Base `  Y
)
213, 20frlmpws 27321 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( ( (ringLMod `  R )  ^s  I )s  B ) )
221, 2, 21syl2anc 642 . . . . . . 7  |-  ( ph  ->  Y  =  ( ( (ringLMod `  R )  ^s  I )s  B ) )
2322fveq2d 5545 . . . . . 6  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( ( (ringLMod `  R
)  ^s  I )s  B ) ) )
2420, 23syl5eq 2340 . . . . 5  |-  ( ph  ->  B  =  ( Base `  ( ( (ringLMod `  R
)  ^s  I )s  B ) ) )
25 eqid 2296 . . . . . . 7  |-  ( ( (ringLMod `  R )  ^s  I )s  B )  =  ( ( (ringLMod `  R
)  ^s  I )s  B )
2625, 17ressbasss 13216 . . . . . 6  |-  ( Base `  ( ( (ringLMod `  R
)  ^s  I )s  B ) )  C_  ( Base `  ( (ringLMod `  R )  ^s  I ) )
2726a1i 10 . . . . 5  |-  ( ph  ->  ( Base `  (
( (ringLMod `  R )  ^s  I )s  B ) )  C_  ( Base `  ( (ringLMod `  R )  ^s  I ) ) )
2824, 27eqsstrd 3225 . . . 4  |-  ( ph  ->  B  C_  ( Base `  ( (ringLMod `  R
)  ^s  I ) ) )
29 frlmplusgval.f . . . 4  |-  ( ph  ->  F  e.  B )
3028, 29sseldd 3194 . . 3  |-  ( ph  ->  F  e.  ( Base `  ( (ringLMod `  R
)  ^s  I ) ) )
31 frlmplusgval.g . . . 4  |-  ( ph  ->  G  e.  B )
3228, 31sseldd 3194 . . 3  |-  ( ph  ->  G  e.  ( Base `  ( (ringLMod `  R
)  ^s  I ) ) )
33 frlmplusgval.a . . . 4  |-  .+  =  ( +g  `  R )
34 rlmplusg 15965 . . . 4  |-  ( +g  `  R )  =  ( +g  `  (ringLMod `  R
) )
3533, 34eqtri 2316 . . 3  |-  .+  =  ( +g  `  (ringLMod `  R
) )
3616, 17, 19, 2, 30, 32, 35, 11pwsplusgval 13405 . 2  |-  ( ph  ->  ( F ( +g  `  ( (ringLMod `  R
)  ^s  I ) ) G )  =  ( F  o F  .+  G
) )
3715, 36eqtrd 2328 1  |-  ( ph  ->  ( F  .+b  G
)  =  ( F  o F  .+  G
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   _Vcvv 2801    C_ wss 3165   ` cfv 5271  (class class class)co 5874    o Fcof 6092   Basecbs 13164   ↾s cress 13165   +g cplusg 13224    ^s cpws 13363  ringLModcrglmod 15938   freeLMod cfrlm 27315
This theorem is referenced by:  frlmup1  27353  matplusg2  27580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-fz 10799  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-prds 13364  df-pws 13366  df-sra 15941  df-rgmod 15942  df-dsmm 27301  df-frlm 27317
  Copyright terms: Public domain W3C validator