Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmsslss2 Unicode version

Theorem frlmsslss2 27113
Description: A subset of a free module obtained by restricting the support set is a submodule.  J is the set of permitted unit vectors. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Hypotheses
Ref Expression
frlmsslss.y  |-  Y  =  ( R freeLMod  I )
frlmsslss.u  |-  U  =  ( LSubSp `  Y )
frlmsslss.b  |-  B  =  ( Base `  Y
)
frlmsslss.z  |-  .0.  =  ( 0g `  R )
frlmsslss2.c  |-  C  =  { x  e.  B  |  ( `' x " ( _V  \  {  .0.  } ) )  C_  J }
Assertion
Ref Expression
frlmsslss2  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  C  e.  U )
Distinct variable groups:    x, B    x, I    x, J    x, R    x, U    x,  .0.    x, V    x, Y
Allowed substitution hint:    C( x)

Proof of Theorem frlmsslss2
StepHypRef Expression
1 frlmsslss2.c . . 3  |-  C  =  { x  e.  B  |  ( `' x " ( _V  \  {  .0.  } ) )  C_  J }
2 frlmsslss.y . . . . . . . . 9  |-  Y  =  ( R freeLMod  I )
3 eqid 2404 . . . . . . . . 9  |-  ( Base `  R )  =  (
Base `  R )
4 frlmsslss.b . . . . . . . . 9  |-  B  =  ( Base `  Y
)
52, 3, 4frlmbasf 27096 . . . . . . . 8  |-  ( ( I  e.  V  /\  x  e.  B )  ->  x : I --> ( Base `  R ) )
653ad2antl2 1120 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  x  e.  B )  ->  x : I --> ( Base `  R ) )
7 ffn 5550 . . . . . . 7  |-  ( x : I --> ( Base `  R )  ->  x  Fn  I )
86, 7syl 16 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  x  e.  B )  ->  x  Fn  I )
9 simpl3 962 . . . . . . . 8  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  x  e.  B )  ->  J  C_  I )
10 undif 3668 . . . . . . . 8  |-  ( J 
C_  I  <->  ( J  u.  ( I  \  J
) )  =  I )
119, 10sylib 189 . . . . . . 7  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  x  e.  B )  ->  ( J  u.  (
I  \  J )
)  =  I )
1211fneq2d 5496 . . . . . 6  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  x  e.  B )  ->  ( x  Fn  ( J  u.  ( I  \  J ) )  <->  x  Fn  I ) )
138, 12mpbird 224 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  x  e.  B )  ->  x  Fn  ( J  u.  ( I  \  J ) ) )
14 disjdif 3660 . . . . . 6  |-  ( J  i^i  ( I  \  J ) )  =  (/)
1514a1i 11 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  x  e.  B )  ->  ( J  i^i  (
I  \  J )
)  =  (/) )
16 frlmsslss.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
17 fvex 5701 . . . . . . 7  |-  ( 0g
`  R )  e. 
_V
1816, 17eqeltri 2474 . . . . . 6  |-  .0.  e.  _V
1918a1i 11 . . . . 5  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  x  e.  B )  ->  .0.  e.  _V )
20 fnsuppres 5911 . . . . 5  |-  ( ( x  Fn  ( J  u.  ( I  \  J ) )  /\  ( J  i^i  (
I  \  J )
)  =  (/)  /\  .0.  e.  _V )  ->  (
( `' x "
( _V  \  {  .0.  } ) )  C_  J 
<->  ( x  |`  (
I  \  J )
)  =  ( ( I  \  J )  X.  {  .0.  }
) ) )
2113, 15, 19, 20syl3anc 1184 . . . 4  |-  ( ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  /\  x  e.  B )  ->  ( ( `' x " ( _V  \  {  .0.  } ) )  C_  J 
<->  ( x  |`  (
I  \  J )
)  =  ( ( I  \  J )  X.  {  .0.  }
) ) )
2221rabbidva 2907 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  { x  e.  B  |  ( `' x " ( _V 
\  {  .0.  }
) )  C_  J }  =  { x  e.  B  |  (
x  |`  ( I  \  J ) )  =  ( ( I  \  J )  X.  {  .0.  } ) } )
231, 22syl5eq 2448 . 2  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  C  =  { x  e.  B  |  ( x  |`  ( I  \  J ) )  =  ( ( I  \  J )  X.  {  .0.  }
) } )
24 difssd 3435 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  (
I  \  J )  C_  I )
25 frlmsslss.u . . . 4  |-  U  =  ( LSubSp `  Y )
26 eqid 2404 . . . 4  |-  { x  e.  B  |  (
x  |`  ( I  \  J ) )  =  ( ( I  \  J )  X.  {  .0.  } ) }  =  { x  e.  B  |  ( x  |`  ( I  \  J ) )  =  ( ( I  \  J )  X.  {  .0.  }
) }
272, 25, 4, 16, 26frlmsslss 27112 . . 3  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  (
I  \  J )  C_  I )  ->  { x  e.  B  |  (
x  |`  ( I  \  J ) )  =  ( ( I  \  J )  X.  {  .0.  } ) }  e.  U )
2824, 27syld3an3 1229 . 2  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  { x  e.  B  |  (
x  |`  ( I  \  J ) )  =  ( ( I  \  J )  X.  {  .0.  } ) }  e.  U )
2923, 28eqeltrd 2478 1  |-  ( ( R  e.  Ring  /\  I  e.  V  /\  J  C_  I )  ->  C  e.  U )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   {crab 2670   _Vcvv 2916    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   {csn 3774    X. cxp 4835   `'ccnv 4836    |` cres 4839   "cima 4840    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   Basecbs 13424   0gc0g 13678   Ringcrg 15615   LSubSpclss 15963   freeLMod cfrlm 27080
This theorem is referenced by:  frlmssuvc1  27114  frlmsslsp  27116
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-hom 13508  df-cco 13509  df-prds 13626  df-pws 13628  df-0g 13682  df-mnd 14645  df-mhm 14693  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-ghm 14959  df-mgp 15604  df-rng 15618  df-ur 15620  df-subrg 15821  df-lmod 15907  df-lss 15964  df-lmhm 16053  df-sra 16199  df-rgmod 16200  df-dsmm 27066  df-frlm 27082
  Copyright terms: Public domain W3C validator