Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frlmssuvc2 Unicode version

Theorem frlmssuvc2 27247
Description: A nonzero scalar multiple of a unit vector not included in a support-restriction subspace is not included in the subspace. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Hypotheses
Ref Expression
frlmssuvc1.f  |-  F  =  ( R freeLMod  I )
frlmssuvc1.u  |-  U  =  ( R unitVec  I )
frlmssuvc1.b  |-  B  =  ( Base `  F
)
frlmssuvc1.k  |-  K  =  ( Base `  R
)
frlmssuvc1.t  |-  .x.  =  ( .s `  F )
frlmssuvc1.z  |-  .0.  =  ( 0g `  R )
frlmssuvc1.c  |-  C  =  { x  e.  B  |  ( `' x " ( _V  \  {  .0.  } ) )  C_  J }
frlmssuvc1.r  |-  ( ph  ->  R  e.  Ring )
frlmssuvc1.i  |-  ( ph  ->  I  e.  V )
frlmssuvc1.j  |-  ( ph  ->  J  C_  I )
frlmssuvc2.l  |-  ( ph  ->  L  e.  ( I 
\  J ) )
frlmssuvc2.x  |-  ( ph  ->  X  e.  ( K 
\  {  .0.  }
) )
Assertion
Ref Expression
frlmssuvc2  |-  ( ph  ->  -.  ( X  .x.  ( U `  L ) )  e.  C )
Distinct variable groups:    x, B    x, F    x, I    x, J    x, K    x, L    x, R    x,  .0.    ph, x    x, U    x, V    x,  .x.    x, X
Allowed substitution hint:    C( x)

Proof of Theorem frlmssuvc2
StepHypRef Expression
1 frlmssuvc2.l . . . . . . 7  |-  ( ph  ->  L  e.  ( I 
\  J ) )
2 eldifi 3298 . . . . . . 7  |-  ( L  e.  ( I  \  J )  ->  L  e.  I )
31, 2syl 15 . . . . . 6  |-  ( ph  ->  L  e.  I )
4 frlmssuvc1.f . . . . . . . . 9  |-  F  =  ( R freeLMod  I )
5 frlmssuvc1.b . . . . . . . . 9  |-  B  =  ( Base `  F
)
6 frlmssuvc1.k . . . . . . . . 9  |-  K  =  ( Base `  R
)
7 frlmssuvc1.i . . . . . . . . 9  |-  ( ph  ->  I  e.  V )
8 frlmssuvc2.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  ( K 
\  {  .0.  }
) )
9 eldifi 3298 . . . . . . . . . 10  |-  ( X  e.  ( K  \  {  .0.  } )  ->  X  e.  K )
108, 9syl 15 . . . . . . . . 9  |-  ( ph  ->  X  e.  K )
11 frlmssuvc1.r . . . . . . . . . . 11  |-  ( ph  ->  R  e.  Ring )
12 frlmssuvc1.u . . . . . . . . . . . 12  |-  U  =  ( R unitVec  I )
1312, 4, 5uvcff 27240 . . . . . . . . . . 11  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  U : I --> B )
1411, 7, 13syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  U : I --> B )
15 ffvelrn 5663 . . . . . . . . . 10  |-  ( ( U : I --> B  /\  L  e.  I )  ->  ( U `  L
)  e.  B )
1614, 3, 15syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( U `  L
)  e.  B )
17 frlmssuvc1.t . . . . . . . . 9  |-  .x.  =  ( .s `  F )
18 eqid 2283 . . . . . . . . 9  |-  ( .r
`  R )  =  ( .r `  R
)
194, 5, 6, 7, 10, 16, 3, 17, 18frlmvscaval 27231 . . . . . . . 8  |-  ( ph  ->  ( ( X  .x.  ( U `  L ) ) `  L )  =  ( X ( .r `  R ) ( ( U `  L ) `  L
) ) )
20 eqid 2283 . . . . . . . . . 10  |-  ( 1r
`  R )  =  ( 1r `  R
)
2112, 11, 7, 3, 20uvcvv1 27238 . . . . . . . . 9  |-  ( ph  ->  ( ( U `  L ) `  L
)  =  ( 1r
`  R ) )
2221oveq2d 5874 . . . . . . . 8  |-  ( ph  ->  ( X ( .r
`  R ) ( ( U `  L
) `  L )
)  =  ( X ( .r `  R
) ( 1r `  R ) ) )
236, 18, 20rngridm 15365 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  X  e.  K )  ->  ( X ( .r `  R ) ( 1r
`  R ) )  =  X )
2411, 10, 23syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( X ( .r
`  R ) ( 1r `  R ) )  =  X )
2519, 22, 243eqtrd 2319 . . . . . . 7  |-  ( ph  ->  ( ( X  .x.  ( U `  L ) ) `  L )  =  X )
26 eldifsni 3750 . . . . . . . 8  |-  ( X  e.  ( K  \  {  .0.  } )  ->  X  =/=  .0.  )
278, 26syl 15 . . . . . . 7  |-  ( ph  ->  X  =/=  .0.  )
2825, 27eqnetrd 2464 . . . . . 6  |-  ( ph  ->  ( ( X  .x.  ( U `  L ) ) `  L )  =/=  .0.  )
29 fveq2 5525 . . . . . . . 8  |-  ( x  =  L  ->  (
( X  .x.  ( U `  L )
) `  x )  =  ( ( X 
.x.  ( U `  L ) ) `  L ) )
3029neeq1d 2459 . . . . . . 7  |-  ( x  =  L  ->  (
( ( X  .x.  ( U `  L ) ) `  x )  =/=  .0.  <->  ( ( X  .x.  ( U `  L ) ) `  L )  =/=  .0.  ) )
3130elrab 2923 . . . . . 6  |-  ( L  e.  { x  e.  I  |  ( ( X  .x.  ( U `
 L ) ) `
 x )  =/= 
.0.  }  <->  ( L  e.  I  /\  ( ( X  .x.  ( U `
 L ) ) `
 L )  =/= 
.0.  ) )
323, 28, 31sylanbrc 645 . . . . 5  |-  ( ph  ->  L  e.  { x  e.  I  |  (
( X  .x.  ( U `  L )
) `  x )  =/=  .0.  } )
33 eldifn 3299 . . . . . 6  |-  ( L  e.  ( I  \  J )  ->  -.  L  e.  J )
341, 33syl 15 . . . . 5  |-  ( ph  ->  -.  L  e.  J
)
35 nelss 26751 . . . . 5  |-  ( ( L  e.  { x  e.  I  |  (
( X  .x.  ( U `  L )
) `  x )  =/=  .0.  }  /\  -.  L  e.  J )  ->  -.  { x  e.  I  |  ( ( X  .x.  ( U `
 L ) ) `
 x )  =/= 
.0.  }  C_  J )
3632, 34, 35syl2anc 642 . . . 4  |-  ( ph  ->  -.  { x  e.  I  |  ( ( X  .x.  ( U `
 L ) ) `
 x )  =/= 
.0.  }  C_  J )
374frlmlmod 27217 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  F  e.  LMod )
3811, 7, 37syl2anc 642 . . . . . . . 8  |-  ( ph  ->  F  e.  LMod )
394frlmsca 27221 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  I  e.  V )  ->  R  =  (Scalar `  F )
)
4011, 7, 39syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  R  =  (Scalar `  F ) )
4140fveq2d 5529 . . . . . . . . . 10  |-  ( ph  ->  ( Base `  R
)  =  ( Base `  (Scalar `  F )
) )
426, 41syl5eq 2327 . . . . . . . . 9  |-  ( ph  ->  K  =  ( Base `  (Scalar `  F )
) )
4310, 42eleqtrd 2359 . . . . . . . 8  |-  ( ph  ->  X  e.  ( Base `  (Scalar `  F )
) )
44 eqid 2283 . . . . . . . . 9  |-  (Scalar `  F )  =  (Scalar `  F )
45 eqid 2283 . . . . . . . . 9  |-  ( Base `  (Scalar `  F )
)  =  ( Base `  (Scalar `  F )
)
465, 44, 17, 45lmodvscl 15644 . . . . . . . 8  |-  ( ( F  e.  LMod  /\  X  e.  ( Base `  (Scalar `  F ) )  /\  ( U `  L )  e.  B )  -> 
( X  .x.  ( U `  L )
)  e.  B )
4738, 43, 16, 46syl3anc 1182 . . . . . . 7  |-  ( ph  ->  ( X  .x.  ( U `  L )
)  e.  B )
484, 6, 5frlmbasf 27228 . . . . . . 7  |-  ( ( I  e.  V  /\  ( X  .x.  ( U `
 L ) )  e.  B )  -> 
( X  .x.  ( U `  L )
) : I --> K )
497, 47, 48syl2anc 642 . . . . . 6  |-  ( ph  ->  ( X  .x.  ( U `  L )
) : I --> K )
50 ffn 5389 . . . . . 6  |-  ( ( X  .x.  ( U `
 L ) ) : I --> K  -> 
( X  .x.  ( U `  L )
)  Fn  I )
51 fnniniseg2 5649 . . . . . 6  |-  ( ( X  .x.  ( U `
 L ) )  Fn  I  ->  ( `' ( X  .x.  ( U `  L ) ) " ( _V 
\  {  .0.  }
) )  =  {
x  e.  I  |  ( ( X  .x.  ( U `  L ) ) `  x )  =/=  .0.  } )
5249, 50, 513syl 18 . . . . 5  |-  ( ph  ->  ( `' ( X 
.x.  ( U `  L ) ) "
( _V  \  {  .0.  } ) )  =  { x  e.  I  |  ( ( X 
.x.  ( U `  L ) ) `  x )  =/=  .0.  } )
5352sseq1d 3205 . . . 4  |-  ( ph  ->  ( ( `' ( X  .x.  ( U `
 L ) )
" ( _V  \  {  .0.  } ) ) 
C_  J  <->  { x  e.  I  |  (
( X  .x.  ( U `  L )
) `  x )  =/=  .0.  }  C_  J
) )
5436, 53mtbird 292 . . 3  |-  ( ph  ->  -.  ( `' ( X  .x.  ( U `
 L ) )
" ( _V  \  {  .0.  } ) ) 
C_  J )
5554intnand 882 . 2  |-  ( ph  ->  -.  ( ( X 
.x.  ( U `  L ) )  e.  B  /\  ( `' ( X  .x.  ( U `  L )
) " ( _V 
\  {  .0.  }
) )  C_  J
) )
56 cnveq 4855 . . . . 5  |-  ( x  =  ( X  .x.  ( U `  L ) )  ->  `' x  =  `' ( X  .x.  ( U `  L ) ) )
5756imaeq1d 5011 . . . 4  |-  ( x  =  ( X  .x.  ( U `  L ) )  ->  ( `' x " ( _V  \  {  .0.  } ) )  =  ( `' ( X  .x.  ( U `
 L ) )
" ( _V  \  {  .0.  } ) ) )
5857sseq1d 3205 . . 3  |-  ( x  =  ( X  .x.  ( U `  L ) )  ->  ( ( `' x " ( _V 
\  {  .0.  }
) )  C_  J  <->  ( `' ( X  .x.  ( U `  L ) ) " ( _V 
\  {  .0.  }
) )  C_  J
) )
59 frlmssuvc1.c . . 3  |-  C  =  { x  e.  B  |  ( `' x " ( _V  \  {  .0.  } ) )  C_  J }
6058, 59elrab2 2925 . 2  |-  ( ( X  .x.  ( U `
 L ) )  e.  C  <->  ( ( X  .x.  ( U `  L ) )  e.  B  /\  ( `' ( X  .x.  ( U `  L )
) " ( _V 
\  {  .0.  }
) )  C_  J
) )
6155, 60sylnibr 296 1  |-  ( ph  ->  -.  ( X  .x.  ( U `  L ) )  e.  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547   _Vcvv 2788    \ cdif 3149    C_ wss 3152   {csn 3640   `'ccnv 4688   "cima 4692    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   Basecbs 13148   .rcmulr 13209  Scalarcsca 13211   .scvsca 13212   0gc0g 13400   Ringcrg 15337   1rcur 15339   LModclmod 15627   freeLMod cfrlm 27212   unitVec cuvc 27213
This theorem is referenced by:  frlmlbs  27249
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-fz 10783  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-prds 13348  df-pws 13350  df-0g 13404  df-mnd 14367  df-grp 14489  df-minusg 14490  df-sbg 14491  df-subg 14618  df-mgp 15326  df-rng 15340  df-ur 15342  df-subrg 15543  df-lmod 15629  df-lss 15690  df-sra 15925  df-rgmod 15926  df-dsmm 27198  df-frlm 27214  df-uvc 27215
  Copyright terms: Public domain W3C validator