MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdss2 Unicode version

Theorem frmdss2 14501
Description: A subset of generators is contained in a submonoid iff the set of words on the generators is in the submonoid. This can be viewed as an elementary way of saying "the monoidal closure of  J is Word  J". (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frmdmnd.m  |-  M  =  (freeMnd `  I )
frmdgsum.u  |-  U  =  (varFMnd `  I )
Assertion
Ref Expression
frmdss2  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  ( ( U " J )  C_  A 
<-> Word 
J  C_  A )
)

Proof of Theorem frmdss2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . . . . . 7  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  I  e.  V )
2 simpl2 959 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  J  C_  I
)
3 sswrd 11439 . . . . . . . . 9  |-  ( J 
C_  I  -> Word  J  C_ Word  I )
42, 3syl 15 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  -> Word  J  C_ Word  I )
5 simprr 733 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  x  e. Word  J )
64, 5sseldd 3194 . . . . . . 7  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  x  e. Word  I )
7 frmdmnd.m . . . . . . . 8  |-  M  =  (freeMnd `  I )
8 frmdgsum.u . . . . . . . 8  |-  U  =  (varFMnd `  I )
97, 8frmdgsum 14500 . . . . . . 7  |-  ( ( I  e.  V  /\  x  e. Word  I )  ->  ( M  gsumg  ( U  o.  x
) )  =  x )
101, 6, 9syl2anc 642 . . . . . 6  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  ( M  gsumg  ( U  o.  x ) )  =  x )
11 simpl3 960 . . . . . . 7  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  A  e.  (SubMnd `  M ) )
12 wrdf 11435 . . . . . . . . . . 11  |-  ( x  e. Word  J  ->  x : ( 0..^ (
# `  x )
) --> J )
1312ad2antll 709 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  x :
( 0..^ ( # `  x ) ) --> J )
14 frn 5411 . . . . . . . . . 10  |-  ( x : ( 0..^ (
# `  x )
) --> J  ->  ran  x  C_  J )
1513, 14syl 15 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  ran  x  C_  J )
16 cores 5192 . . . . . . . . 9  |-  ( ran  x  C_  J  ->  ( ( U  |`  J )  o.  x )  =  ( U  o.  x
) )
1715, 16syl 15 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  ( ( U  |`  J )  o.  x )  =  ( U  o.  x ) )
188vrmdf 14496 . . . . . . . . . . . . . 14  |-  ( I  e.  V  ->  U : I -->Word  I )
19183ad2ant1 976 . . . . . . . . . . . . 13  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  U :
I -->Word  I )
20 ffn 5405 . . . . . . . . . . . . 13  |-  ( U : I -->Word  I  ->  U  Fn  I )
2119, 20syl 15 . . . . . . . . . . . 12  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  U  Fn  I )
2221adantr 451 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  U  Fn  I )
23 fnssres 5373 . . . . . . . . . . 11  |-  ( ( U  Fn  I  /\  J  C_  I )  -> 
( U  |`  J )  Fn  J )
2422, 2, 23syl2anc 642 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  ( U  |`  J )  Fn  J
)
25 df-ima 4718 . . . . . . . . . . 11  |-  ( U
" J )  =  ran  ( U  |`  J )
26 simprl 732 . . . . . . . . . . 11  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  ( U " J )  C_  A
)
2725, 26syl5eqssr 3236 . . . . . . . . . 10  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  ran  ( U  |`  J )  C_  A
)
28 df-f 5275 . . . . . . . . . 10  |-  ( ( U  |`  J ) : J --> A  <->  ( ( U  |`  J )  Fn  J  /\  ran  ( U  |`  J )  C_  A ) )
2924, 27, 28sylanbrc 645 . . . . . . . . 9  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  ( U  |`  J ) : J --> A )
30 wrdco 11502 . . . . . . . . 9  |-  ( ( x  e. Word  J  /\  ( U  |`  J ) : J --> A )  ->  ( ( U  |`  J )  o.  x
)  e. Word  A )
315, 29, 30syl2anc 642 . . . . . . . 8  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  ( ( U  |`  J )  o.  x )  e. Word  A
)
3217, 31eqeltrrd 2371 . . . . . . 7  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  ( U  o.  x )  e. Word  A
)
33 gsumwsubmcl 14477 . . . . . . 7  |-  ( ( A  e.  (SubMnd `  M )  /\  ( U  o.  x )  e. Word  A )  ->  ( M  gsumg  ( U  o.  x
) )  e.  A
)
3411, 32, 33syl2anc 642 . . . . . 6  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  ( M  gsumg  ( U  o.  x ) )  e.  A )
3510, 34eqeltrrd 2371 . . . . 5  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  (
( U " J
)  C_  A  /\  x  e. Word  J )
)  ->  x  e.  A )
3635expr 598 . . . 4  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  ( U " J )  C_  A )  ->  (
x  e. Word  J  ->  x  e.  A ) )
3736ssrdv 3198 . . 3  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  ( U " J )  C_  A )  -> Word  J  C_  A )
3837ex 423 . 2  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  ( ( U " J )  C_  A  -> Word  J  C_  A ) )
39 simpl1 958 . . . . . . 7  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  x  e.  J )  ->  I  e.  V )
40 simp2 956 . . . . . . . 8  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  J  C_  I
)
4140sselda 3193 . . . . . . 7  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  x  e.  J )  ->  x  e.  I )
428vrmdval 14495 . . . . . . 7  |-  ( ( I  e.  V  /\  x  e.  I )  ->  ( U `  x
)  =  <" x "> )
4339, 41, 42syl2anc 642 . . . . . 6  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  x  e.  J )  ->  ( U `  x )  =  <" x "> )
44 simpr 447 . . . . . . 7  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  x  e.  J )  ->  x  e.  J )
4544s1cld 11458 . . . . . 6  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  x  e.  J )  ->  <" x ">  e. Word  J )
4643, 45eqeltrd 2370 . . . . 5  |-  ( ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M
) )  /\  x  e.  J )  ->  ( U `  x )  e. Word  J )
4746ralrimiva 2639 . . . 4  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  A. x  e.  J  ( U `  x )  e. Word  J
)
48 fnfun 5357 . . . . . 6  |-  ( U  Fn  I  ->  Fun  U )
4921, 48syl 15 . . . . 5  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  Fun  U )
50 fndm 5359 . . . . . . 7  |-  ( U  Fn  I  ->  dom  U  =  I )
5121, 50syl 15 . . . . . 6  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  dom  U  =  I )
5240, 51sseqtr4d 3228 . . . . 5  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  J  C_  dom  U )
53 funimass4 5589 . . . . 5  |-  ( ( Fun  U  /\  J  C_ 
dom  U )  -> 
( ( U " J )  C_ Word  J  <->  A. x  e.  J  ( U `  x )  e. Word  J
) )
5449, 52, 53syl2anc 642 . . . 4  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  ( ( U " J )  C_ Word  J  <->  A. x  e.  J  ( U `  x )  e. Word  J ) )
5547, 54mpbird 223 . . 3  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  ( U " J )  C_ Word  J )
56 sstr2 3199 . . 3  |-  ( ( U " J ) 
C_ Word  J  ->  (Word  J  C_  A  ->  ( U " J )  C_  A
) )
5755, 56syl 15 . 2  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  (Word  J  C_  A  ->  ( U " J )  C_  A
) )
5838, 57impbid 183 1  |-  ( ( I  e.  V  /\  J  C_  I  /\  A  e.  (SubMnd `  M )
)  ->  ( ( U " J )  C_  A 
<-> Word 
J  C_  A )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556    C_ wss 3165   dom cdm 4705   ran crn 4706    |` cres 4707   "cima 4708    o. ccom 4709   Fun wfun 5265    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   0cc0 8753  ..^cfzo 10886   #chash 11353  Word cword 11419   <"cs1 11421    gsumg cgsu 13417  SubMndcsubmnd 14430  freeMndcfrmd 14485  varFMndcvrmd 14486
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799  df-fzo 10887  df-seq 11063  df-hash 11354  df-word 11425  df-concat 11426  df-s1 11427  df-substr 11428  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-0g 13420  df-gsum 13421  df-mnd 14383  df-submnd 14432  df-frmd 14487  df-vrmd 14488
  Copyright terms: Public domain W3C validator