MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup1 Unicode version

Theorem frmdup1 14486
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 27-Sep-2015.)
Hypotheses
Ref Expression
frmdup.m  |-  M  =  (freeMnd `  I )
frmdup.b  |-  B  =  ( Base `  G
)
frmdup.e  |-  E  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )
frmdup.g  |-  ( ph  ->  G  e.  Mnd )
frmdup.i  |-  ( ph  ->  I  e.  X )
frmdup.a  |-  ( ph  ->  A : I --> B )
Assertion
Ref Expression
frmdup1  |-  ( ph  ->  E  e.  ( M MndHom  G ) )
Distinct variable groups:    x, A    x, B    x, G    ph, x    x, I
Allowed substitution hints:    E( x)    M( x)    X( x)

Proof of Theorem frmdup1
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup.i . . . 4  |-  ( ph  ->  I  e.  X )
2 frmdup.m . . . . 5  |-  M  =  (freeMnd `  I )
32frmdmnd 14481 . . . 4  |-  ( I  e.  X  ->  M  e.  Mnd )
41, 3syl 15 . . 3  |-  ( ph  ->  M  e.  Mnd )
5 frmdup.g . . 3  |-  ( ph  ->  G  e.  Mnd )
64, 5jca 518 . 2  |-  ( ph  ->  ( M  e.  Mnd  /\  G  e.  Mnd )
)
75adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e. Word  I )  ->  G  e.  Mnd )
8 simpr 447 . . . . . . 7  |-  ( (
ph  /\  x  e. Word  I )  ->  x  e. Word  I )
9 frmdup.a . . . . . . . 8  |-  ( ph  ->  A : I --> B )
109adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e. Word  I )  ->  A :
I --> B )
11 wrdco 11486 . . . . . . 7  |-  ( ( x  e. Word  I  /\  A : I --> B )  ->  ( A  o.  x )  e. Word  B
)
128, 10, 11syl2anc 642 . . . . . 6  |-  ( (
ph  /\  x  e. Word  I )  ->  ( A  o.  x )  e. Word  B
)
13 frmdup.b . . . . . . 7  |-  B  =  ( Base `  G
)
1413gsumwcl 14463 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( A  o.  x
)  e. Word  B )  ->  ( G  gsumg  ( A  o.  x
) )  e.  B
)
157, 12, 14syl2anc 642 . . . . 5  |-  ( (
ph  /\  x  e. Word  I )  ->  ( G  gsumg  ( A  o.  x ) )  e.  B )
16 frmdup.e . . . . 5  |-  E  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )
1715, 16fmptd 5684 . . . 4  |-  ( ph  ->  E :Word  I --> B )
18 eqid 2283 . . . . . . 7  |-  ( Base `  M )  =  (
Base `  M )
192, 18frmdbas 14474 . . . . . 6  |-  ( I  e.  X  ->  ( Base `  M )  = Word 
I )
201, 19syl 15 . . . . 5  |-  ( ph  ->  ( Base `  M
)  = Word  I )
2120feq2d 5380 . . . 4  |-  ( ph  ->  ( E : (
Base `  M ) --> B 
<->  E :Word  I --> B ) )
2217, 21mpbird 223 . . 3  |-  ( ph  ->  E : ( Base `  M ) --> B )
232, 18frmdelbas 14475 . . . . . . . . 9  |-  ( y  e.  ( Base `  M
)  ->  y  e. Word  I )
2423ad2antrl 708 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  y  e. Word  I )
252, 18frmdelbas 14475 . . . . . . . . 9  |-  ( z  e.  ( Base `  M
)  ->  z  e. Word  I )
2625ad2antll 709 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  z  e. Word  I )
279adantr 451 . . . . . . . 8  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  A : I --> B )
28 ccatco 11490 . . . . . . . 8  |-  ( ( y  e. Word  I  /\  z  e. Word  I  /\  A : I --> B )  ->  ( A  o.  ( y concat  z )
)  =  ( ( A  o.  y ) concat 
( A  o.  z
) ) )
2924, 26, 27, 28syl3anc 1182 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( A  o.  ( y concat  z ) )  =  ( ( A  o.  y
) concat  ( A  o.  z
) ) )
3029oveq2d 5874 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( G  gsumg  ( A  o.  (
y concat  z ) ) )  =  ( G  gsumg  ( ( A  o.  y ) concat 
( A  o.  z
) ) ) )
315adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  G  e.  Mnd )
32 wrdco 11486 . . . . . . . 8  |-  ( ( y  e. Word  I  /\  A : I --> B )  ->  ( A  o.  y )  e. Word  B
)
3324, 27, 32syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( A  o.  y )  e. Word  B )
34 wrdco 11486 . . . . . . . 8  |-  ( ( z  e. Word  I  /\  A : I --> B )  ->  ( A  o.  z )  e. Word  B
)
3526, 27, 34syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( A  o.  z )  e. Word  B )
36 eqid 2283 . . . . . . . 8  |-  ( +g  `  G )  =  ( +g  `  G )
3713, 36gsumccat 14464 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( A  o.  y
)  e. Word  B  /\  ( A  o.  z
)  e. Word  B )  ->  ( G  gsumg  ( ( A  o.  y ) concat  ( A  o.  z ) ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
3831, 33, 35, 37syl3anc 1182 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( G  gsumg  ( ( A  o.  y ) concat  ( A  o.  z ) ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
3930, 38eqtrd 2315 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( G  gsumg  ( A  o.  (
y concat  z ) ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
40 eqid 2283 . . . . . . . . 9  |-  ( +g  `  M )  =  ( +g  `  M )
412, 18, 40frmdadd 14477 . . . . . . . 8  |-  ( ( y  e.  ( Base `  M )  /\  z  e.  ( Base `  M
) )  ->  (
y ( +g  `  M
) z )  =  ( y concat  z ) )
4241adantl 452 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  (
y ( +g  `  M
) z )  =  ( y concat  z ) )
4342fveq2d 5529 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y
( +g  `  M ) z ) )  =  ( E `  (
y concat  z ) ) )
44 ccatcl 11429 . . . . . . . 8  |-  ( ( y  e. Word  I  /\  z  e. Word  I )  ->  ( y concat  z )  e. Word  I )
4524, 26, 44syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  (
y concat  z )  e. Word  I
)
46 coeq2 4842 . . . . . . . . 9  |-  ( x  =  ( y concat  z
)  ->  ( A  o.  x )  =  ( A  o.  ( y concat 
z ) ) )
4746oveq2d 5874 . . . . . . . 8  |-  ( x  =  ( y concat  z
)  ->  ( G  gsumg  ( A  o.  x ) )  =  ( G 
gsumg  ( A  o.  (
y concat  z ) ) ) )
48 ovex 5883 . . . . . . . 8  |-  ( G 
gsumg  ( A  o.  x
) )  e.  _V
4947, 16, 48fvmpt3i 5605 . . . . . . 7  |-  ( ( y concat  z )  e. Word 
I  ->  ( E `  ( y concat  z ) )  =  ( G 
gsumg  ( A  o.  (
y concat  z ) ) ) )
5045, 49syl 15 . . . . . 6  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y concat  z ) )  =  ( G  gsumg  ( A  o.  (
y concat  z ) ) ) )
5143, 50eqtrd 2315 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y
( +g  `  M ) z ) )  =  ( G  gsumg  ( A  o.  (
y concat  z ) ) ) )
52 coeq2 4842 . . . . . . . . 9  |-  ( x  =  y  ->  ( A  o.  x )  =  ( A  o.  y ) )
5352oveq2d 5874 . . . . . . . 8  |-  ( x  =  y  ->  ( G  gsumg  ( A  o.  x
) )  =  ( G  gsumg  ( A  o.  y
) ) )
5453, 16, 48fvmpt3i 5605 . . . . . . 7  |-  ( y  e. Word  I  ->  ( E `  y )  =  ( G  gsumg  ( A  o.  y ) ) )
55 coeq2 4842 . . . . . . . . 9  |-  ( x  =  z  ->  ( A  o.  x )  =  ( A  o.  z ) )
5655oveq2d 5874 . . . . . . . 8  |-  ( x  =  z  ->  ( G  gsumg  ( A  o.  x
) )  =  ( G  gsumg  ( A  o.  z
) ) )
5756, 16, 48fvmpt3i 5605 . . . . . . 7  |-  ( z  e. Word  I  ->  ( E `  z )  =  ( G  gsumg  ( A  o.  z ) ) )
5854, 57oveqan12d 5877 . . . . . 6  |-  ( ( y  e. Word  I  /\  z  e. Word  I )  ->  ( ( E `  y ) ( +g  `  G ) ( E `
 z ) )  =  ( ( G 
gsumg  ( A  o.  y
) ) ( +g  `  G ) ( G 
gsumg  ( A  o.  z
) ) ) )
5924, 26, 58syl2anc 642 . . . . 5  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  (
( E `  y
) ( +g  `  G
) ( E `  z ) )  =  ( ( G  gsumg  ( A  o.  y ) ) ( +g  `  G
) ( G  gsumg  ( A  o.  z ) ) ) )
6039, 51, 593eqtr4d 2325 . . . 4  |-  ( (
ph  /\  ( y  e.  ( Base `  M
)  /\  z  e.  ( Base `  M )
) )  ->  ( E `  ( y
( +g  `  M ) z ) )  =  ( ( E `  y ) ( +g  `  G ) ( E `
 z ) ) )
6160ralrimivva 2635 . . 3  |-  ( ph  ->  A. y  e.  (
Base `  M ) A. z  e.  ( Base `  M ) ( E `  ( y ( +g  `  M
) z ) )  =  ( ( E `
 y ) ( +g  `  G ) ( E `  z
) ) )
62 wrd0 11418 . . . 4  |-  (/)  e. Word  I
63 coeq2 4842 . . . . . . . 8  |-  ( x  =  (/)  ->  ( A  o.  x )  =  ( A  o.  (/) ) )
64 co02 5186 . . . . . . . 8  |-  ( A  o.  (/) )  =  (/)
6563, 64syl6eq 2331 . . . . . . 7  |-  ( x  =  (/)  ->  ( A  o.  x )  =  (/) )
6665oveq2d 5874 . . . . . 6  |-  ( x  =  (/)  ->  ( G 
gsumg  ( A  o.  x
) )  =  ( G  gsumg  (/) ) )
67 eqid 2283 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
6867gsum0 14457 . . . . . 6  |-  ( G 
gsumg  (/) )  =  ( 0g
`  G )
6966, 68syl6eq 2331 . . . . 5  |-  ( x  =  (/)  ->  ( G 
gsumg  ( A  o.  x
) )  =  ( 0g `  G ) )
7069, 16, 48fvmpt3i 5605 . . . 4  |-  ( (/)  e. Word  I  ->  ( E `  (/) )  =  ( 0g `  G ) )
7162, 70mp1i 11 . . 3  |-  ( ph  ->  ( E `  (/) )  =  ( 0g `  G
) )
7222, 61, 713jca 1132 . 2  |-  ( ph  ->  ( E : (
Base `  M ) --> B  /\  A. y  e.  ( Base `  M
) A. z  e.  ( Base `  M
) ( E `  ( y ( +g  `  M ) z ) )  =  ( ( E `  y ) ( +g  `  G
) ( E `  z ) )  /\  ( E `  (/) )  =  ( 0g `  G
) ) )
732frmd0 14482 . . 3  |-  (/)  =  ( 0g `  M )
7418, 13, 40, 36, 73, 67ismhm 14417 . 2  |-  ( E  e.  ( M MndHom  G
)  <->  ( ( M  e.  Mnd  /\  G  e.  Mnd )  /\  ( E : ( Base `  M
) --> B  /\  A. y  e.  ( Base `  M ) A. z  e.  ( Base `  M
) ( E `  ( y ( +g  `  M ) z ) )  =  ( ( E `  y ) ( +g  `  G
) ( E `  z ) )  /\  ( E `  (/) )  =  ( 0g `  G
) ) ) )
756, 72, 74sylanbrc 645 1  |-  ( ph  ->  E  e.  ( M MndHom  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   (/)c0 3455    e. cmpt 4077    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858  Word cword 11403   concat cconcat 11404   Basecbs 13148   +g cplusg 13208   0gc0g 13400    gsumg cgsu 13401   Mndcmnd 14361   MndHom cmhm 14413  freeMndcfrmd 14469
This theorem is referenced by:  frmdup3  14488
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-word 11409  df-concat 11410  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-gsum 13405  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-frmd 14471
  Copyright terms: Public domain W3C validator