MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frmdup3 Unicode version

Theorem frmdup3 14488
Description: Universal property of the free monoid by existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
frmdup3.m  |-  M  =  (freeMnd `  I )
frmdup3.b  |-  B  =  ( Base `  G
)
frmdup3.u  |-  U  =  (varFMnd `  I )
Assertion
Ref Expression
frmdup3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  E! m  e.  ( M MndHom  G ) ( m  o.  U
)  =  A )
Distinct variable groups:    A, m    B, m    m, G    m, I    U, m    m, M   
m, V

Proof of Theorem frmdup3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frmdup3.m . . 3  |-  M  =  (freeMnd `  I )
2 frmdup3.b . . 3  |-  B  =  ( Base `  G
)
3 eqid 2283 . . 3  |-  ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )
4 simp1 955 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  G  e.  Mnd )
5 simp2 956 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  I  e.  V
)
6 simp3 957 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  A : I --> B )
71, 2, 3, 4, 5, 6frmdup1 14486 . 2  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  e.  ( M MndHom  G ) )
84adantr 451 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  G  e.  Mnd )
95adantr 451 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  I  e.  V )
106adantr 451 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  A :
I --> B )
11 frmdup3.u . . . . 5  |-  U  =  (varFMnd `  I )
12 simpr 447 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  y  e.  I )
131, 2, 3, 8, 9, 10, 11, 12frmdup2 14487 . . . 4  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  y  e.  I
)  ->  ( (
x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) `  ( U `  y ) )  =  ( A `
 y ) )
1413mpteq2dva 4106 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( y  e.  I  |->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) ) `  ( U `  y ) ) )  =  ( y  e.  I  |->  ( A `  y ) ) )
15 eqid 2283 . . . . . 6  |-  ( Base `  M )  =  (
Base `  M )
1615, 2mhmf 14420 . . . . 5  |-  ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  e.  ( M MndHom  G )  ->  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) ) : ( Base `  M ) --> B )
177, 16syl 15 . . . 4  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) ) : ( Base `  M ) --> B )
1811vrmdf 14480 . . . . . 6  |-  ( I  e.  V  ->  U : I -->Word  I )
19183ad2ant2 977 . . . . 5  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  U : I -->Word  I )
201, 15frmdbas 14474 . . . . . . 7  |-  ( I  e.  V  ->  ( Base `  M )  = Word 
I )
21203ad2ant2 977 . . . . . 6  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( Base `  M
)  = Word  I )
22 feq3 5377 . . . . . 6  |-  ( (
Base `  M )  = Word  I  ->  ( U : I --> ( Base `  M )  <->  U :
I -->Word  I ) )
2321, 22syl 15 . . . . 5  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( U :
I --> ( Base `  M
)  <->  U : I -->Word  I )
)
2419, 23mpbird 223 . . . 4  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  U : I --> ( Base `  M
) )
25 fcompt 5694 . . . 4  |-  ( ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) : ( Base `  M
) --> B  /\  U : I --> ( Base `  M ) )  -> 
( ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  o.  U )  =  ( y  e.  I  |->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) ) `  ( U `  y ) ) ) )
2617, 24, 25syl2anc 642 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  o.  U )  =  ( y  e.  I  |->  ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) `  ( U `  y ) ) ) )
276feqmptd 5575 . . 3  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  A  =  ( y  e.  I  |->  ( A `  y ) ) )
2814, 26, 273eqtr4d 2325 . 2  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  o.  U )  =  A )
2915, 2mhmf 14420 . . . . . . . 8  |-  ( m  e.  ( M MndHom  G
)  ->  m :
( Base `  M ) --> B )
3029ad2antrl 708 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m : ( Base `  M
) --> B )
3121adantr 451 . . . . . . . 8  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  ( Base `  M )  = Word 
I )
3231feq2d 5380 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  (
m : ( Base `  M ) --> B  <->  m :Word  I
--> B ) )
3330, 32mpbid 201 . . . . . 6  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m :Word  I --> B )
3433feqmptd 5575 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m  =  ( x  e. Word 
I  |->  ( m `  x ) ) )
35 simplrl 736 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  m  e.  ( M MndHom  G ) )
36 simpr 447 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  x  e. Word  I )
3724ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  U :
I --> ( Base `  M
) )
38 wrdco 11486 . . . . . . . . 9  |-  ( ( x  e. Word  I  /\  U : I --> ( Base `  M ) )  -> 
( U  o.  x
)  e. Word  ( Base `  M ) )
3936, 37, 38syl2anc 642 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( U  o.  x )  e. Word  ( Base `  M ) )
4015gsumwmhm 14467 . . . . . . . 8  |-  ( ( m  e.  ( M MndHom  G )  /\  ( U  o.  x )  e. Word  ( Base `  M
) )  ->  (
m `  ( M  gsumg  ( U  o.  x ) ) )  =  ( G  gsumg  ( m  o.  ( U  o.  x )
) ) )
4135, 39, 40syl2anc 642 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m `  ( M  gsumg  ( U  o.  x
) ) )  =  ( G  gsumg  ( m  o.  ( U  o.  x )
) ) )
425ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  I  e.  V )
431, 11frmdgsum 14484 . . . . . . . . 9  |-  ( ( I  e.  V  /\  x  e. Word  I )  ->  ( M  gsumg  ( U  o.  x
) )  =  x )
4442, 36, 43syl2anc 642 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( M  gsumg  ( U  o.  x ) )  =  x )
4544fveq2d 5529 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m `  ( M  gsumg  ( U  o.  x
) ) )  =  ( m `  x
) )
46 coass 5191 . . . . . . . . 9  |-  ( ( m  o.  U )  o.  x )  =  ( m  o.  ( U  o.  x )
)
47 simplrr 737 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m  o.  U )  =  A )
4847coeq1d 4845 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( (
m  o.  U )  o.  x )  =  ( A  o.  x
) )
4946, 48syl5eqr 2329 . . . . . . . 8  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m  o.  ( U  o.  x
) )  =  ( A  o.  x ) )
5049oveq2d 5874 . . . . . . 7  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( G  gsumg  ( m  o.  ( U  o.  x ) ) )  =  ( G 
gsumg  ( A  o.  x
) ) )
5141, 45, 503eqtr3d 2323 . . . . . 6  |-  ( ( ( ( G  e. 
Mnd  /\  I  e.  V  /\  A : I --> B )  /\  (
m  e.  ( M MndHom  G )  /\  (
m  o.  U )  =  A ) )  /\  x  e. Word  I
)  ->  ( m `  x )  =  ( G  gsumg  ( A  o.  x
) ) )
5251mpteq2dva 4106 . . . . 5  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  (
x  e. Word  I  |->  ( m `  x ) )  =  ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) ) )
5334, 52eqtrd 2315 . . . 4  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  ( m  e.  ( M MndHom  G )  /\  ( m  o.  U )  =  A ) )  ->  m  =  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) ) )
5453expr 598 . . 3  |-  ( ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  /\  m  e.  ( M MndHom  G ) )  ->  ( ( m  o.  U )  =  A  ->  m  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) ) )
5554ralrimiva 2626 . 2  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  A. m  e.  ( M MndHom  G ) ( ( m  o.  U
)  =  A  ->  m  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x ) ) ) ) )
56 coeq1 4841 . . . 4  |-  ( m  =  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  ->  ( m  o.  U )  =  ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  o.  U ) )
5756eqeq1d 2291 . . 3  |-  ( m  =  ( x  e. Word 
I  |->  ( G  gsumg  ( A  o.  x ) ) )  ->  ( (
m  o.  U )  =  A  <->  ( (
x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  o.  U )  =  A ) )
5857eqreu 2957 . 2  |-  ( ( ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) )  e.  ( M MndHom  G )  /\  ( ( x  e. Word  I  |->  ( G 
gsumg  ( A  o.  x
) ) )  o.  U )  =  A  /\  A. m  e.  ( M MndHom  G ) ( ( m  o.  U )  =  A  ->  m  =  ( x  e. Word  I  |->  ( G  gsumg  ( A  o.  x
) ) ) ) )  ->  E! m  e.  ( M MndHom  G ) ( m  o.  U
)  =  A )
597, 28, 55, 58syl3anc 1182 1  |-  ( ( G  e.  Mnd  /\  I  e.  V  /\  A : I --> B )  ->  E! m  e.  ( M MndHom  G ) ( m  o.  U
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   E!wreu 2545    e. cmpt 4077    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858  Word cword 11403   Basecbs 13148    gsumg cgsu 13401   Mndcmnd 14361   MndHom cmhm 14413  freeMndcfrmd 14469  varFMndcvrmd 14470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-fzo 10871  df-seq 11047  df-hash 11338  df-word 11409  df-concat 11410  df-s1 11411  df-substr 11412  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-0g 13404  df-gsum 13405  df-mnd 14367  df-mhm 14415  df-submnd 14416  df-frmd 14471  df-vrmd 14472
  Copyright terms: Public domain W3C validator