Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frr3g Unicode version

Theorem frr3g 24280
Description: Functions defined by founded recursion are identical up to relation, domain, and characteristic function. General version of frr3 (Contributed by Scott Fenton, 10-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frr3g  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  F  =  G )
Distinct variable groups:    y, A    y, F    y, G    y, H    y, R

Proof of Theorem frr3g
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1605 . . . . . . . . . . . 12  |-  F/ w
( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )
21ra5 3075 . . . . . . . . . . 11  |-  ( A. w  e.  Pred  ( R ,  A ,  z ) ( ( ( F  Fn  A  /\  G  Fn  A )  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A ,  y )
) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  w )  =  ( G `  w ) )  -> 
( ( ( F  Fn  A  /\  G  Fn  A )  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
3 r19.26 2675 . . . . . . . . . . . . . 14  |-  ( A. y  e.  A  (
( F `  y
)  =  ( y H ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y ) ) ) )  <-> 
( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A ,  y )
) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )
43anbi2i 675 . . . . . . . . . . . . 13  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  <-> 
( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) ) )
5 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
6 id 19 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  y  =  z )
7 predeq3 24171 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( y  =  z  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
z ) )
87reseq2d 4955 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  ( F  |`  Pred ( R ,  A ,  y )
)  =  ( F  |`  Pred ( R ,  A ,  z )
) )
96, 8oveq12d 5876 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  (
y H ( F  |`  Pred ( R ,  A ,  y )
) )  =  ( z H ( F  |`  Pred ( R ,  A ,  z )
) ) )
105, 9eqeq12d 2297 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  (
( F `  y
)  =  ( y H ( F  |`  Pred ( R ,  A ,  y ) ) )  <->  ( F `  z )  =  ( z H ( F  |`  Pred ( R ,  A ,  z )
) ) ) )
11 fveq2 5525 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  ( G `  y )  =  ( G `  z ) )
127reseq2d 4955 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  z  ->  ( G  |`  Pred ( R ,  A ,  y )
)  =  ( G  |`  Pred ( R ,  A ,  z )
) )
136, 12oveq12d 5876 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  z  ->  (
y H ( G  |`  Pred ( R ,  A ,  y )
) )  =  ( z H ( G  |`  Pred ( R ,  A ,  z )
) ) )
1411, 13eqeq12d 2297 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  (
( G `  y
)  =  ( y H ( G  |`  Pred ( R ,  A ,  y ) ) )  <->  ( G `  z )  =  ( z H ( G  |`  Pred ( R ,  A ,  z )
) ) ) )
1510, 14anbi12d 691 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
( ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) )  <->  ( ( F `
 z )  =  ( z H ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `  z )  =  ( z H ( G  |`  Pred ( R ,  A , 
z ) ) ) ) ) )
1615rspcva 2882 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  A  /\  A. y  e.  A  ( ( F `  y
)  =  ( y H ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y ) ) ) ) )  ->  ( ( F `  z )  =  ( z H ( F  |`  Pred ( R ,  A , 
z ) ) )  /\  ( G `  z )  =  ( z H ( G  |`  Pred ( R ,  A ,  z )
) ) ) )
17 predss 24173 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  Pred ( R ,  A , 
z )  C_  A
18 fvreseq 5628 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  Pred ( R ,  A ,  z )  C_  A )  ->  ( ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) )  <->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
1917, 18mpan2 652 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) )  <->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) ) )
2019biimpar 471 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( F  |`  Pred ( R ,  A ,  z ) )  =  ( G  |`  Pred ( R ,  A ,  z ) ) )
2120oveq2d 5874 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( z H ( F  |`  Pred ( R ,  A , 
z ) ) )  =  ( z H ( G  |`  Pred ( R ,  A , 
z ) ) ) )
2221eqcomd 2288 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( z H ( G  |`  Pred ( R ,  A , 
z ) ) )  =  ( z H ( F  |`  Pred ( R ,  A , 
z ) ) ) )
23 eqtr3 2302 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( z H ( G  |`  Pred ( R ,  A ,  z ) ) )  =  ( z H ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( F `  z )  =  ( z H ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( z H ( G  |`  Pred ( R ,  A ,  z ) ) )  =  ( F `
 z ) )
2423eqcomd 2288 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( z H ( G  |`  Pred ( R ,  A ,  z ) ) )  =  ( z H ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( F `  z )  =  ( z H ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( F `  z )  =  ( z H ( G  |`  Pred ( R ,  A ,  z )
) ) )
25 eqtr3 2302 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F `  z
)  =  ( z H ( G  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( z H ( G  |`  Pred ( R ,  A ,  z ) ) ) )  ->  ( F `  z )  =  ( G `  z ) )
2625ex 423 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  z )  =  ( z H ( G  |`  Pred ( R ,  A , 
z ) ) )  ->  ( ( G `
 z )  =  ( z H ( G  |`  Pred ( R ,  A ,  z ) ) )  -> 
( F `  z
)  =  ( G `
 z ) ) )
2724, 26syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( z H ( G  |`  Pred ( R ,  A ,  z ) ) )  =  ( z H ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( F `  z )  =  ( z H ( F  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( ( G `  z )  =  ( z H ( G  |`  Pred ( R ,  A , 
z ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
2827expimpd 586 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z H ( G  |`  Pred ( R ,  A ,  z )
) )  =  ( z H ( F  |`  Pred ( R ,  A ,  z )
) )  ->  (
( ( F `  z )  =  ( z H ( F  |`  Pred ( R ,  A ,  z )
) )  /\  ( G `  z )  =  ( z H ( G  |`  Pred ( R ,  A , 
z ) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
2922, 28syl 15 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w ) )  ->  ( ( ( F `  z )  =  ( z H ( F  |`  Pred ( R ,  A , 
z ) ) )  /\  ( G `  z )  =  ( z H ( G  |`  Pred ( R ,  A ,  z )
) ) )  -> 
( F `  z
)  =  ( G `
 z ) ) )
3029com12 27 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F `  z
)  =  ( z H ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( z H ( G  |`  Pred ( R ,  A ,  z ) ) ) )  ->  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) )  ->  ( F `  z )  =  ( G `  z ) ) )
3130exp3a 425 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  z
)  =  ( z H ( F  |`  Pred ( R ,  A ,  z ) ) )  /\  ( G `
 z )  =  ( z H ( G  |`  Pred ( R ,  A ,  z ) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
)  ->  ( F `  z )  =  ( G `  z ) ) ) )
3216, 31syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  A  /\  A. y  e.  A  ( ( F `  y
)  =  ( y H ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y ) ) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e. 
Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) )
3332ex 423 . . . . . . . . . . . . . . 15  |-  ( z  e.  A  ->  ( A. y  e.  A  ( ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A ,  y )
) )  /\  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) )  ->  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( A. w  e. 
Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) ) )
3433com23 72 . . . . . . . . . . . . . 14  |-  ( z  e.  A  ->  (
( F  Fn  A  /\  G  Fn  A
)  ->  ( A. y  e.  A  (
( F `  y
)  =  ( y H ( F  |`  Pred ( R ,  A ,  y ) ) )  /\  ( G `
 y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y ) ) ) )  ->  ( A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) ) )
3534imp3a 420 . . . . . . . . . . . . 13  |-  ( z  e.  A  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  A. y  e.  A  ( ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) )
364, 35syl5bir 209 . . . . . . . . . . . 12  |-  ( z  e.  A  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( A. w  e.  Pred  ( R ,  A ,  z )
( F `  w
)  =  ( G `
 w )  -> 
( F `  z
)  =  ( G `
 z ) ) ) )
3736a2d 23 . . . . . . . . . . 11  |-  ( z  e.  A  ->  (
( ( ( F  Fn  A  /\  G  Fn  A )  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  A. w  e.  Pred  ( R ,  A , 
z ) ( F `
 w )  =  ( G `  w
) )  ->  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
382, 37syl5 28 . . . . . . . . . 10  |-  ( z  e.  A  ->  ( A. w  e.  Pred  ( R ,  A , 
z ) ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  w )  =  ( G `  w ) )  ->  ( (
( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
39 fveq2 5525 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( F `  z )  =  ( F `  w ) )
40 fveq2 5525 . . . . . . . . . . . 12  |-  ( z  =  w  ->  ( G `  z )  =  ( G `  w ) )
4139, 40eqeq12d 2297 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( F `  z
)  =  ( G `
 z )  <->  ( F `  w )  =  ( G `  w ) ) )
4241imbi2d 307 . . . . . . . . . 10  |-  ( z  =  w  ->  (
( ( ( F  Fn  A  /\  G  Fn  A )  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) )  <->  ( ( ( F  Fn  A  /\  G  Fn  A )  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A ,  y )
) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F `  w )  =  ( G `  w ) ) ) )
4338, 42frins2g 24249 . . . . . . . . 9  |-  ( ( R  Fr  A  /\  R Se  A )  ->  A. z  e.  A  ( (
( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) )
44 rsp 2603 . . . . . . . . 9  |-  ( A. z  e.  A  (
( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) )  ->  ( z  e.  A  ->  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
4543, 44syl 15 . . . . . . . 8  |-  ( ( R  Fr  A  /\  R Se  A )  ->  (
z  e.  A  -> 
( ( ( F  Fn  A  /\  G  Fn  A )  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( F `  z )  =  ( G `  z ) ) ) )
4645com3r 73 . . . . . . 7  |-  ( ( ( F  Fn  A  /\  G  Fn  A
)  /\  ( A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) )  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A ,  y )
) ) ) )  ->  ( ( R  Fr  A  /\  R Se  A )  ->  (
z  e.  A  -> 
( F `  z
)  =  ( G `
 z ) ) ) )
4746an4s 799 . . . . . 6  |-  ( ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  (
( R  Fr  A  /\  R Se  A )  ->  ( z  e.  A  ->  ( F `  z
)  =  ( G `
 z ) ) ) )
4847com12 27 . . . . 5  |-  ( ( R  Fr  A  /\  R Se  A )  ->  (
( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A ,  y )
) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  (
z  e.  A  -> 
( F `  z
)  =  ( G `
 z ) ) ) )
49483impib 1149 . . . 4  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  (
z  e.  A  -> 
( F `  z
)  =  ( G `
 z ) ) )
5049ralrimiv 2625 . . 3  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  A. z  e.  A  ( F `  z )  =  ( G `  z ) )
51 eqid 2283 . . 3  |-  A  =  A
5250, 51jctil 523 . 2  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) )
53 eqfnfv2 5623 . . . 4  |-  ( ( F  Fn  A  /\  G  Fn  A )  ->  ( F  =  G  <-> 
( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
5453ad2ant2r 727 . . 3  |-  ( ( ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F  =  G  <->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
55543adant1 973 . 2  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  ( F  =  G  <->  ( A  =  A  /\  A. z  e.  A  ( F `  z )  =  ( G `  z ) ) ) )
5652, 55mpbird 223 1  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( F  Fn  A  /\  A. y  e.  A  ( F `  y )  =  ( y H ( F  |`  Pred ( R ,  A , 
y ) ) ) )  /\  ( G  Fn  A  /\  A. y  e.  A  ( G `  y )  =  ( y H ( G  |`  Pred ( R ,  A , 
y ) ) ) ) )  ->  F  =  G )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152    Fr wfr 4349   Se wse 4350    |` cres 4691    Fn wfn 5250   ` cfv 5255  (class class class)co 5858   Predcpred 24167
This theorem is referenced by:  frrlem5  24285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-recs 6388  df-rdg 6423  df-pred 24168  df-trpred 24221
  Copyright terms: Public domain W3C validator