Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5d Unicode version

Theorem frrlem5d 24673
Description: Lemma for founded recursion. The domain of the union of a subset of  B is a subset of  A. (Contributed by Paul Chapman, 29-Apr-2012.)
Hypotheses
Ref Expression
frrlem5.1  |-  R  Fr  A
frrlem5.2  |-  R Se  A
frrlem5.3  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
Assertion
Ref Expression
frrlem5d  |-  ( C 
C_  B  ->  dom  U. C  C_  A )
Distinct variable groups:    A, f, x, y    f, G, x, y    R, f, x, y   
x, B
Allowed substitution hints:    B( y, f)    C( x, y, f)

Proof of Theorem frrlem5d
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 dmuni 4925 . 2  |-  dom  U. C  =  U_ g  e.  C  dom  g
2 ssel 3208 . . . . 5  |-  ( C 
C_  B  ->  (
g  e.  C  -> 
g  e.  B ) )
3 frrlem5.3 . . . . . 6  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
43frrlem3 24668 . . . . 5  |-  ( g  e.  B  ->  dom  g  C_  A )
52, 4syl6 29 . . . 4  |-  ( C 
C_  B  ->  (
g  e.  C  ->  dom  g  C_  A ) )
65ralrimiv 2659 . . 3  |-  ( C 
C_  B  ->  A. g  e.  C  dom  g  C_  A )
7 iunss 3980 . . 3  |-  ( U_ g  e.  C  dom  g  C_  A  <->  A. g  e.  C  dom  g  C_  A )
86, 7sylibr 203 . 2  |-  ( C 
C_  B  ->  U_ g  e.  C  dom  g  C_  A )
91, 8syl5eqss 3256 1  |-  ( C 
C_  B  ->  dom  U. C  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934   E.wex 1532    = wceq 1633    e. wcel 1701   {cab 2302   A.wral 2577    C_ wss 3186   U.cuni 3864   U_ciun 3942    Fr wfr 4386   Se wse 4387   dom cdm 4726    |` cres 4728    Fn wfn 5287   ` cfv 5292  (class class class)co 5900   Predcpred 24552
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ral 2582  df-rex 2583  df-rab 2586  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-fv 5300  df-ov 5903  df-pred 24553
  Copyright terms: Public domain W3C validator