Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5e Structured version   Unicode version

Theorem frrlem5e 25591
Description: Lemma for founded recursion. The domain of the union of a subset of  B is closed under predecessors. (Contributed by Paul Chapman, 1-May-2012.)
Hypotheses
Ref Expression
frrlem5.1  |-  R  Fr  A
frrlem5.2  |-  R Se  A
frrlem5.3  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
Assertion
Ref Expression
frrlem5e  |-  ( C 
C_  B  ->  ( X  e.  dom  U. C  ->  Pred ( R ,  A ,  X )  C_ 
dom  U. C ) )
Distinct variable groups:    A, f, x, y    f, G, x, y    R, f, x, y   
x, B
Allowed substitution hints:    B( y, f)    C( x, y, f)    X( x, y, f)

Proof of Theorem frrlem5e
Dummy variables  z 
t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmuni 5080 . . . 4  |-  dom  U. C  =  U_ z  e.  C  dom  z
21eleq2i 2501 . . 3  |-  ( X  e.  dom  U. C  <->  X  e.  U_ z  e.  C  dom  z )
3 eliun 4098 . . 3  |-  ( X  e.  U_ z  e.  C  dom  z  <->  E. z  e.  C  X  e.  dom  z )
42, 3bitri 242 . 2  |-  ( X  e.  dom  U. C  <->  E. z  e.  C  X  e.  dom  z )
5 ssel2 3344 . . . . 5  |-  ( ( C  C_  B  /\  z  e.  C )  ->  z  e.  B )
6 frrlem5.3 . . . . . . . 8  |-  B  =  { f  |  E. x ( f  Fn  x  /\  ( x 
C_  A  /\  A. y  e.  x  Pred ( R ,  A , 
y )  C_  x  /\  A. y  e.  x  ( f `  y
)  =  ( y G ( f  |`  Pred ( R ,  A ,  y ) ) ) ) ) }
76frrlem1 25583 . . . . . . 7  |-  B  =  { z  |  E. w ( z  Fn  w  /\  ( w 
C_  A  /\  A. t  e.  w  Pred ( R ,  A , 
t )  C_  w  /\  A. t  e.  w  ( z `  t
)  =  ( t G ( z  |`  Pred ( R ,  A ,  t ) ) ) ) ) }
87abeq2i 2544 . . . . . 6  |-  ( z  e.  B  <->  E. w
( z  Fn  w  /\  ( w  C_  A  /\  A. t  e.  w  Pred ( R ,  A ,  t )  C_  w  /\  A. t  e.  w  ( z `  t )  =  ( t G ( z  |`  Pred ( R ,  A ,  t )
) ) ) ) )
9 fndm 5545 . . . . . . . . 9  |-  ( z  Fn  w  ->  dom  z  =  w )
10 predeq3 25444 . . . . . . . . . . . . 13  |-  ( t  =  X  ->  Pred ( R ,  A , 
t )  =  Pred ( R ,  A ,  X ) )
1110sseq1d 3376 . . . . . . . . . . . 12  |-  ( t  =  X  ->  ( Pred ( R ,  A ,  t )  C_  w 
<-> 
Pred ( R ,  A ,  X )  C_  w ) )
1211rspccv 3050 . . . . . . . . . . 11  |-  ( A. t  e.  w  Pred ( R ,  A , 
t )  C_  w  ->  ( X  e.  w  ->  Pred ( R ,  A ,  X )  C_  w ) )
13123ad2ant2 980 . . . . . . . . . 10  |-  ( ( w  C_  A  /\  A. t  e.  w  Pred ( R ,  A , 
t )  C_  w  /\  A. t  e.  w  ( z `  t
)  =  ( t G ( z  |`  Pred ( R ,  A ,  t ) ) ) )  ->  ( X  e.  w  ->  Pred ( R ,  A ,  X )  C_  w
) )
14 eleq2 2498 . . . . . . . . . . 11  |-  ( dom  z  =  w  -> 
( X  e.  dom  z 
<->  X  e.  w ) )
15 sseq2 3371 . . . . . . . . . . 11  |-  ( dom  z  =  w  -> 
( Pred ( R ,  A ,  X )  C_ 
dom  z  <->  Pred ( R ,  A ,  X
)  C_  w )
)
1614, 15imbi12d 313 . . . . . . . . . 10  |-  ( dom  z  =  w  -> 
( ( X  e. 
dom  z  ->  Pred ( R ,  A ,  X )  C_  dom  z )  <->  ( X  e.  w  ->  Pred ( R ,  A ,  X )  C_  w
) ) )
1713, 16syl5ibr 214 . . . . . . . . 9  |-  ( dom  z  =  w  -> 
( ( w  C_  A  /\  A. t  e.  w  Pred ( R ,  A ,  t )  C_  w  /\  A. t  e.  w  ( z `  t )  =  ( t G ( z  |`  Pred ( R ,  A ,  t )
) ) )  -> 
( X  e.  dom  z  ->  Pred ( R ,  A ,  X )  C_ 
dom  z ) ) )
189, 17syl 16 . . . . . . . 8  |-  ( z  Fn  w  ->  (
( w  C_  A  /\  A. t  e.  w  Pred ( R ,  A ,  t )  C_  w  /\  A. t  e.  w  ( z `  t )  =  ( t G ( z  |`  Pred ( R ,  A ,  t )
) ) )  -> 
( X  e.  dom  z  ->  Pred ( R ,  A ,  X )  C_ 
dom  z ) ) )
1918imp 420 . . . . . . 7  |-  ( ( z  Fn  w  /\  ( w  C_  A  /\  A. t  e.  w  Pred ( R ,  A , 
t )  C_  w  /\  A. t  e.  w  ( z `  t
)  =  ( t G ( z  |`  Pred ( R ,  A ,  t ) ) ) ) )  -> 
( X  e.  dom  z  ->  Pred ( R ,  A ,  X )  C_ 
dom  z ) )
2019exlimiv 1645 . . . . . 6  |-  ( E. w ( z  Fn  w  /\  ( w 
C_  A  /\  A. t  e.  w  Pred ( R ,  A , 
t )  C_  w  /\  A. t  e.  w  ( z `  t
)  =  ( t G ( z  |`  Pred ( R ,  A ,  t ) ) ) ) )  -> 
( X  e.  dom  z  ->  Pred ( R ,  A ,  X )  C_ 
dom  z ) )
218, 20sylbi 189 . . . . 5  |-  ( z  e.  B  ->  ( X  e.  dom  z  ->  Pred ( R ,  A ,  X )  C_  dom  z ) )
225, 21syl 16 . . . 4  |-  ( ( C  C_  B  /\  z  e.  C )  ->  ( X  e.  dom  z  ->  Pred ( R ,  A ,  X )  C_ 
dom  z ) )
23 dmeq 5071 . . . . . . . . . 10  |-  ( w  =  z  ->  dom  w  =  dom  z )
2423sseq2d 3377 . . . . . . . . 9  |-  ( w  =  z  ->  ( Pred ( R ,  A ,  X )  C_  dom  w 
<-> 
Pred ( R ,  A ,  X )  C_ 
dom  z ) )
2524rspcev 3053 . . . . . . . 8  |-  ( ( z  e.  C  /\  Pred ( R ,  A ,  X )  C_  dom  z )  ->  E. w  e.  C  Pred ( R ,  A ,  X
)  C_  dom  w )
26 ssiun 4134 . . . . . . . 8  |-  ( E. w  e.  C  Pred ( R ,  A ,  X )  C_  dom  w  ->  Pred ( R ,  A ,  X )  C_ 
U_ w  e.  C  dom  w )
2725, 26syl 16 . . . . . . 7  |-  ( ( z  e.  C  /\  Pred ( R ,  A ,  X )  C_  dom  z )  ->  Pred ( R ,  A ,  X )  C_  U_ w  e.  C  dom  w )
28 dmuni 5080 . . . . . . 7  |-  dom  U. C  =  U_ w  e.  C  dom  w
2927, 28syl6sseqr 3396 . . . . . 6  |-  ( ( z  e.  C  /\  Pred ( R ,  A ,  X )  C_  dom  z )  ->  Pred ( R ,  A ,  X )  C_  dom  U. C )
3029ex 425 . . . . 5  |-  ( z  e.  C  ->  ( Pred ( R ,  A ,  X )  C_  dom  z  ->  Pred ( R ,  A ,  X )  C_ 
dom  U. C ) )
3130adantl 454 . . . 4  |-  ( ( C  C_  B  /\  z  e.  C )  ->  ( Pred ( R ,  A ,  X
)  C_  dom  z  ->  Pred ( R ,  A ,  X )  C_  dom  U. C ) )
3222, 31syld 43 . . 3  |-  ( ( C  C_  B  /\  z  e.  C )  ->  ( X  e.  dom  z  ->  Pred ( R ,  A ,  X )  C_ 
dom  U. C ) )
3332rexlimdva 2831 . 2  |-  ( C 
C_  B  ->  ( E. z  e.  C  X  e.  dom  z  ->  Pred ( R ,  A ,  X )  C_  dom  U. C ) )
344, 33syl5bi 210 1  |-  ( C 
C_  B  ->  ( X  e.  dom  U. C  ->  Pred ( R ,  A ,  X )  C_ 
dom  U. C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937   E.wex 1551    = wceq 1653    e. wcel 1726   {cab 2423   A.wral 2706   E.wrex 2707    C_ wss 3321   U.cuni 4016   U_ciun 4094    Fr wfr 4539   Se wse 4540   dom cdm 4879    |` cres 4881    Fn wfn 5450   ` cfv 5455  (class class class)co 6082   Predcpred 25439
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ral 2711  df-rex 2712  df-rab 2715  df-v 2959  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3630  df-if 3741  df-sn 3821  df-pr 3822  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-fv 5463  df-ov 6085  df-pred 25440
  Copyright terms: Public domain W3C validator