MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseq1p1m1 Unicode version

Theorem fseq1p1m1 10873
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.)
Hypothesis
Ref Expression
fseq1p1m1.1  |-  H  =  { <. ( N  + 
1 ) ,  B >. }
Assertion
Ref Expression
fseq1p1m1  |-  ( N  e.  NN0  ->  ( ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
)  <->  ( G :
( 1 ... ( N  +  1 ) ) --> A  /\  ( G `  ( N  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... N
) ) ) ) )

Proof of Theorem fseq1p1m1
StepHypRef Expression
1 simpr1 961 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  F : ( 1 ... N ) --> A )
2 nn0p1nn 10019 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
32adantr 451 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( N  +  1 )  e.  NN )
4 simpr2 962 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  B  e.  A )
5 fseq1p1m1.1 . . . . . . . . 9  |-  H  =  { <. ( N  + 
1 ) ,  B >. }
6 fsng 5713 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  ( H : {
( N  +  1 ) } --> { B } 
<->  H  =  { <. ( N  +  1 ) ,  B >. } ) )
75, 6mpbiri 224 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  H : { ( N  +  1 ) } --> { B }
)
83, 4, 7syl2anc 642 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  H : { ( N  + 
1 ) } --> { B } )
94snssd 3776 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  { B }  C_  A )
10 fss 5413 . . . . . . 7  |-  ( ( H : { ( N  +  1 ) } --> { B }  /\  { B }  C_  A )  ->  H : { ( N  + 
1 ) } --> A )
118, 9, 10syl2anc 642 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  H : { ( N  + 
1 ) } --> A )
12 fzp1disj 10859 . . . . . . 7  |-  ( ( 1 ... N )  i^i  { ( N  +  1 ) } )  =  (/)
1312a1i 10 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( 1 ... N
)  i^i  { ( N  +  1 ) } )  =  (/) )
14 fun2 5422 . . . . . 6  |-  ( ( ( F : ( 1 ... N ) --> A  /\  H : { ( N  + 
1 ) } --> A )  /\  ( ( 1 ... N )  i^i 
{ ( N  + 
1 ) } )  =  (/) )  ->  ( F  u.  H ) : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) --> A )
151, 11, 13, 14syl21anc 1181 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  u.  H ) : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) --> A )
16 1z 10069 . . . . . . . 8  |-  1  e.  ZZ
17 simpl 443 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  N  e.  NN0 )
18 nn0uz 10278 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
19 1m1e0 9830 . . . . . . . . . . 11  |-  ( 1  -  1 )  =  0
2019fveq2i 5544 . . . . . . . . . 10  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
2118, 20eqtr4i 2319 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
2217, 21syl6eleq 2386 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )
23 fzsuc2 10858 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )  -> 
( 1 ... ( N  +  1 ) )  =  ( ( 1 ... N )  u.  { ( N  +  1 ) } ) )
2416, 22, 23sylancr 644 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
1 ... ( N  + 
1 ) )  =  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) )
2524eqcomd 2301 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( 1 ... N
)  u.  { ( N  +  1 ) } )  =  ( 1 ... ( N  +  1 ) ) )
2625feq2d 5396 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  u.  H
) : ( ( 1 ... N )  u.  { ( N  +  1 ) } ) --> A  <->  ( F  u.  H ) : ( 1 ... ( N  +  1 ) ) --> A ) )
2715, 26mpbid 201 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  u.  H ) : ( 1 ... ( N  +  1 ) ) --> A )
28 simpr3 963 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  G  =  ( F  u.  H ) )
2928feq1d 5395 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G : ( 1 ... ( N  +  1 ) ) --> A  <->  ( F  u.  H ) : ( 1 ... ( N  +  1 ) ) --> A ) )
3027, 29mpbird 223 . . 3  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  G : ( 1 ... ( N  +  1 ) ) --> A )
31 ovex 5899 . . . . . 6  |-  ( N  +  1 )  e. 
_V
3231snid 3680 . . . . 5  |-  ( N  +  1 )  e. 
{ ( N  + 
1 ) }
33 fvres 5558 . . . . 5  |-  ( ( N  +  1 )  e.  { ( N  +  1 ) }  ->  ( ( G  |`  { ( N  + 
1 ) } ) `
 ( N  + 
1 ) )  =  ( G `  ( N  +  1 ) ) )
3432, 33ax-mp 8 . . . 4  |-  ( ( G  |`  { ( N  +  1 ) } ) `  ( N  +  1 ) )  =  ( G `
 ( N  + 
1 ) )
3528reseq1d 4970 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G  |`  { ( N  +  1 ) } )  =  ( ( F  u.  H )  |`  { ( N  + 
1 ) } ) )
36 ffn 5405 . . . . . . . . . . 11  |-  ( F : ( 1 ... N ) --> A  ->  F  Fn  ( 1 ... N ) )
37 fnresdisj 5370 . . . . . . . . . . 11  |-  ( F  Fn  ( 1 ... N )  ->  (
( ( 1 ... N )  i^i  {
( N  +  1 ) } )  =  (/) 
<->  ( F  |`  { ( N  +  1 ) } )  =  (/) ) )
381, 36, 373syl 18 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( ( 1 ... N )  i^i  {
( N  +  1 ) } )  =  (/) 
<->  ( F  |`  { ( N  +  1 ) } )  =  (/) ) )
3913, 38mpbid 201 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  |`  { ( N  +  1 ) } )  =  (/) )
4039uneq1d 3341 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  |`  { ( N  +  1 ) } )  u.  ( H  |`  { ( N  +  1 ) } ) )  =  (
(/)  u.  ( H  |` 
{ ( N  + 
1 ) } ) ) )
41 resundir 4986 . . . . . . . 8  |-  ( ( F  u.  H )  |`  { ( N  + 
1 ) } )  =  ( ( F  |`  { ( N  + 
1 ) } )  u.  ( H  |`  { ( N  + 
1 ) } ) )
42 uncom 3332 . . . . . . . . 9  |-  ( (/)  u.  ( H  |`  { ( N  +  1 ) } ) )  =  ( ( H  |`  { ( N  + 
1 ) } )  u.  (/) )
43 un0 3492 . . . . . . . . 9  |-  ( ( H  |`  { ( N  +  1 ) } )  u.  (/) )  =  ( H  |`  { ( N  +  1 ) } )
4442, 43eqtr2i 2317 . . . . . . . 8  |-  ( H  |`  { ( N  + 
1 ) } )  =  ( (/)  u.  ( H  |`  { ( N  +  1 ) } ) )
4540, 41, 443eqtr4g 2353 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  u.  H
)  |`  { ( N  +  1 ) } )  =  ( H  |`  { ( N  + 
1 ) } ) )
46 ffn 5405 . . . . . . . 8  |-  ( H : { ( N  +  1 ) } --> A  ->  H  Fn  { ( N  +  1 ) } )
47 fnresdm 5369 . . . . . . . 8  |-  ( H  Fn  { ( N  +  1 ) }  ->  ( H  |`  { ( N  + 
1 ) } )  =  H )
4811, 46, 473syl 18 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( H  |`  { ( N  +  1 ) } )  =  H )
4935, 45, 483eqtrd 2332 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G  |`  { ( N  +  1 ) } )  =  H )
5049fveq1d 5543 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( G  |`  { ( N  +  1 ) } ) `  ( N  +  1 ) )  =  ( H `
 ( N  + 
1 ) ) )
515fveq1i 5542 . . . . . . 7  |-  ( H `
 ( N  + 
1 ) )  =  ( { <. ( N  +  1 ) ,  B >. } `  ( N  +  1
) )
52 fvsng 5730 . . . . . . 7  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  ( { <. ( N  +  1 ) ,  B >. } `  ( N  +  1
) )  =  B )
5351, 52syl5eq 2340 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  ( H `  ( N  +  1 ) )  =  B )
543, 4, 53syl2anc 642 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( H `  ( N  +  1 ) )  =  B )
5550, 54eqtrd 2328 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( G  |`  { ( N  +  1 ) } ) `  ( N  +  1 ) )  =  B )
5634, 55syl5eqr 2342 . . 3  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G `  ( N  +  1 ) )  =  B )
5728reseq1d 4970 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G  |`  ( 1 ... N ) )  =  ( ( F  u.  H )  |`  (
1 ... N ) ) )
58 incom 3374 . . . . . . . 8  |-  ( { ( N  +  1 ) }  i^i  (
1 ... N ) )  =  ( ( 1 ... N )  i^i 
{ ( N  + 
1 ) } )
5958, 13syl5eq 2340 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( { ( N  + 
1 ) }  i^i  ( 1 ... N
) )  =  (/) )
60 ffn 5405 . . . . . . . 8  |-  ( H : { ( N  +  1 ) } --> { B }  ->  H  Fn  { ( N  +  1 ) } )
61 fnresdisj 5370 . . . . . . . 8  |-  ( H  Fn  { ( N  +  1 ) }  ->  ( ( { ( N  +  1 ) }  i^i  (
1 ... N ) )  =  (/)  <->  ( H  |`  ( 1 ... N
) )  =  (/) ) )
628, 60, 613syl 18 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( { ( N  +  1 ) }  i^i  ( 1 ... N ) )  =  (/) 
<->  ( H  |`  (
1 ... N ) )  =  (/) ) )
6359, 62mpbid 201 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( H  |`  ( 1 ... N ) )  =  (/) )
6463uneq2d 3342 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  |`  (
1 ... N ) )  u.  ( H  |`  ( 1 ... N
) ) )  =  ( ( F  |`  ( 1 ... N
) )  u.  (/) ) )
65 resundir 4986 . . . . 5  |-  ( ( F  u.  H )  |`  ( 1 ... N
) )  =  ( ( F  |`  (
1 ... N ) )  u.  ( H  |`  ( 1 ... N
) ) )
66 un0 3492 . . . . . 6  |-  ( ( F  |`  ( 1 ... N ) )  u.  (/) )  =  ( F  |`  ( 1 ... N ) )
6766eqcomi 2300 . . . . 5  |-  ( F  |`  ( 1 ... N
) )  =  ( ( F  |`  (
1 ... N ) )  u.  (/) )
6864, 65, 673eqtr4g 2353 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  u.  H
)  |`  ( 1 ... N ) )  =  ( F  |`  (
1 ... N ) ) )
69 fnresdm 5369 . . . . 5  |-  ( F  Fn  ( 1 ... N )  ->  ( F  |`  ( 1 ... N ) )  =  F )
701, 36, 693syl 18 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  |`  ( 1 ... N ) )  =  F )
7157, 68, 703eqtrrd 2333 . . 3  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  F  =  ( G  |`  ( 1 ... N
) ) )
7230, 56, 713jca 1132 . 2  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G : ( 1 ... ( N  +  1 ) ) --> A  /\  ( G `  ( N  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... N
) ) ) )
73 simpr1 961 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  G : ( 1 ... ( N  +  1 ) ) --> A )
74 fzssp1 10850 . . . . 5  |-  ( 1 ... N )  C_  ( 1 ... ( N  +  1 ) )
75 fssres 5424 . . . . 5  |-  ( ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( 1 ... N )  C_  (
1 ... ( N  + 
1 ) ) )  ->  ( G  |`  ( 1 ... N
) ) : ( 1 ... N ) --> A )
7673, 74, 75sylancl 643 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  ( 1 ... N ) ) : ( 1 ... N
) --> A )
77 simpr3 963 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  F  =  ( G  |`  ( 1 ... N
) ) )
7877feq1d 5395 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( F : ( 1 ... N ) --> A  <->  ( G  |`  ( 1 ... N
) ) : ( 1 ... N ) --> A ) )
7976, 78mpbird 223 . . 3  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  F : ( 1 ... N ) --> A )
80 simpr2 962 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G `  ( N  +  1 ) )  =  B )
812adantr 451 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( N  +  1 )  e.  NN )
82 nnuz 10279 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
8381, 82syl6eleq 2386 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( N  +  1 )  e.  ( ZZ>= `  1
) )
84 eluzfz2 10820 . . . . . 6  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
8583, 84syl 15 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
86 ffvelrn 5679 . . . . 5  |-  ( ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( N  + 
1 )  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( G `  ( N  +  1 ) )  e.  A
)
8773, 85, 86syl2anc 642 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G `  ( N  +  1 ) )  e.  A )
8880, 87eqeltrrd 2371 . . 3  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  B  e.  A )
89 ffn 5405 . . . . . . . . 9  |-  ( G : ( 1 ... ( N  +  1 ) ) --> A  ->  G  Fn  ( 1 ... ( N  + 
1 ) ) )
9073, 89syl 15 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  G  Fn  ( 1 ... ( N  +  1 ) ) )
91 fnressn 5721 . . . . . . . 8  |-  ( ( G  Fn  ( 1 ... ( N  + 
1 ) )  /\  ( N  +  1
)  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( G  |`  { ( N  + 
1 ) } )  =  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. } )
9290, 85, 91syl2anc 642 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  { ( N  +  1 ) } )  =  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. } )
93 opeq2 3813 . . . . . . . . 9  |-  ( ( G `  ( N  +  1 ) )  =  B  ->  <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >.  =  <. ( N  +  1 ) ,  B >. )
9493sneqd 3666 . . . . . . . 8  |-  ( ( G `  ( N  +  1 ) )  =  B  ->  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. }  =  { <. ( N  + 
1 ) ,  B >. } )
9580, 94syl 15 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. }  =  { <. ( N  + 
1 ) ,  B >. } )
9692, 95eqtrd 2328 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  { ( N  +  1 ) } )  =  { <. ( N  +  1 ) ,  B >. } )
9796, 5syl6reqr 2347 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  H  =  ( G  |`  { ( N  + 
1 ) } ) )
9877, 97uneq12d 3343 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( F  u.  H )  =  ( ( G  |`  ( 1 ... N
) )  u.  ( G  |`  { ( N  +  1 ) } ) ) )
99 simpl 443 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  N  e.  NN0 )
10099, 21syl6eleq 2386 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )
10116, 100, 23sylancr 644 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  (
1 ... ( N  + 
1 ) )  =  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) )
102101reseq2d 4971 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  ( 1 ... ( N  +  1 ) ) )  =  ( G  |`  (
( 1 ... N
)  u.  { ( N  +  1 ) } ) ) )
103 resundi 4985 . . . . 5  |-  ( G  |`  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) )  =  ( ( G  |`  ( 1 ... N
) )  u.  ( G  |`  { ( N  +  1 ) } ) )
104102, 103syl6req 2345 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  (
( G  |`  (
1 ... N ) )  u.  ( G  |`  { ( N  + 
1 ) } ) )  =  ( G  |`  ( 1 ... ( N  +  1 ) ) ) )
105 fnresdm 5369 . . . . 5  |-  ( G  Fn  ( 1 ... ( N  +  1 ) )  ->  ( G  |`  ( 1 ... ( N  +  1 ) ) )  =  G )
10673, 89, 1053syl 18 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  ( 1 ... ( N  +  1 ) ) )  =  G )
10798, 104, 1063eqtrrd 2333 . . 3  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  G  =  ( F  u.  H ) )
10879, 88, 1073jca 1132 . 2  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H ) ) )
10972, 108impbida 805 1  |-  ( N  e.  NN0  ->  ( ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
)  <->  ( G :
( 1 ... ( N  +  1 ) ) --> A  /\  ( G `  ( N  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... N
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   <.cop 3656    |` cres 4707    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874   0cc0 8753   1c1 8754    + caddc 8756    - cmin 9053   NNcn 9762   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798
This theorem is referenced by:  fseq1m1p1  10874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-n0 9982  df-z 10041  df-uz 10247  df-fz 10799
  Copyright terms: Public domain W3C validator