MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqenlem2 Structured version   Unicode version

Theorem fseqenlem2 7907
Description: Lemma for fseqen 7909. (Contributed by Mario Carneiro, 17-May-2015.)
Hypotheses
Ref Expression
fseqenlem.a  |-  ( ph  ->  A  e.  V )
fseqenlem.b  |-  ( ph  ->  B  e.  A )
fseqenlem.f  |-  ( ph  ->  F : ( A  X.  A ) -1-1-onto-> A )
fseqenlem.g  |-  G  = seq𝜔 ( ( n  e.  _V ,  f  e.  _V  |->  ( x  e.  ( A  ^m  suc  n ) 
|->  ( ( f `  ( x  |`  n ) ) F ( x `
 n ) ) ) ) ,  { <.
(/) ,  B >. } )
fseqenlem.k  |-  K  =  ( y  e.  U_ k  e.  om  ( A  ^m  k )  |->  <. dom  y ,  ( ( G `  dom  y
) `  y ) >. )
Assertion
Ref Expression
fseqenlem2  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) -1-1-> ( om 
X.  A ) )
Distinct variable groups:    y, B    f, n, x, F    y,
k, G    f, k,
y, A, n, x    ph, k, n, x, y
Allowed substitution hints:    ph( f)    B( x, f, k, n)    F( y, k)    G( x, f, n)    K( x, y, f, k, n)    V( x, y, f, k, n)

Proof of Theorem fseqenlem2
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4098 . . . . 5  |-  ( y  e.  U_ k  e. 
om  ( A  ^m  k )  <->  E. k  e.  om  y  e.  ( A  ^m  k ) )
2 elmapi 7039 . . . . . . . . . 10  |-  ( y  e.  ( A  ^m  k )  ->  y : k --> A )
32ad2antll 711 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
y : k --> A )
4 fdm 5596 . . . . . . . . 9  |-  ( y : k --> A  ->  dom  y  =  k
)
53, 4syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  dom  y  =  k
)
6 simprl 734 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
k  e.  om )
75, 6eqeltrd 2511 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  dom  y  e.  om )
85fveq2d 5733 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  dom  y )  =  ( G `  k ) )
98fveq1d 5731 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  dom  y ) `  y
)  =  ( ( G `  k ) `
 y ) )
10 fseqenlem.a . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  V )
11 fseqenlem.b . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  A )
12 fseqenlem.f . . . . . . . . . . . 12  |-  ( ph  ->  F : ( A  X.  A ) -1-1-onto-> A )
13 fseqenlem.g . . . . . . . . . . . 12  |-  G  = seq𝜔 ( ( n  e.  _V ,  f  e.  _V  |->  ( x  e.  ( A  ^m  suc  n ) 
|->  ( ( f `  ( x  |`  n ) ) F ( x `
 n ) ) ) ) ,  { <.
(/) ,  B >. } )
1410, 11, 12, 13fseqenlem1 7906 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  om )  ->  ( G `  k ) : ( A  ^m  k )
-1-1-> A )
1514adantrr 699 . . . . . . . . . 10  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  k
) : ( A  ^m  k ) -1-1-> A
)
16 f1f 5640 . . . . . . . . . 10  |-  ( ( G `  k ) : ( A  ^m  k ) -1-1-> A  -> 
( G `  k
) : ( A  ^m  k ) --> A )
1715, 16syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( G `  k
) : ( A  ^m  k ) --> A )
18 simprr 735 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
y  e.  ( A  ^m  k ) )
1917, 18ffvelrnd 5872 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  k ) `  y
)  e.  A )
209, 19eqeltrd 2511 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  -> 
( ( G `  dom  y ) `  y
)  e.  A )
21 opelxpi 4911 . . . . . . 7  |-  ( ( dom  y  e.  om  /\  ( ( G `  dom  y ) `  y
)  e.  A )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
227, 20, 21syl2anc 644 . . . . . 6  |-  ( (
ph  /\  ( k  e.  om  /\  y  e.  ( A  ^m  k
) ) )  ->  <. dom  y ,  ( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
2322rexlimdvaa 2832 . . . . 5  |-  ( ph  ->  ( E. k  e. 
om  y  e.  ( A  ^m  k )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) ) )
241, 23syl5bi 210 . . . 4  |-  ( ph  ->  ( y  e.  U_ k  e.  om  ( A  ^m  k )  ->  <. dom  y ,  ( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) ) )
2524imp 420 . . 3  |-  ( (
ph  /\  y  e.  U_ k  e.  om  ( A  ^m  k ) )  ->  <. dom  y , 
( ( G `  dom  y ) `  y
) >.  e.  ( om 
X.  A ) )
26 fseqenlem.k . . 3  |-  K  =  ( y  e.  U_ k  e.  om  ( A  ^m  k )  |->  <. dom  y ,  ( ( G `  dom  y
) `  y ) >. )
2725, 26fmptd 5894 . 2  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) --> ( om 
X.  A ) )
28 ffun 5594 . . . . . . . . . . . . . . 15  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) --> ( om 
X.  A )  ->  Fun  K )
29 funbrfv2b 5772 . . . . . . . . . . . . . . 15  |-  ( Fun 
K  ->  ( z K w  <->  ( z  e. 
dom  K  /\  ( K `  z )  =  w ) ) )
3027, 28, 293syl 19 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( z K w  <-> 
( z  e.  dom  K  /\  ( K `  z )  =  w ) ) )
3130simplbda 609 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z K w )  ->  ( K `  z )  =  w )
3230simprbda 608 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z K w )  ->  z  e.  dom  K )
33 fdm 5596 . . . . . . . . . . . . . . . . 17  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) --> ( om 
X.  A )  ->  dom  K  =  U_ k  e.  om  ( A  ^m  k ) )
3427, 33syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  dom  K  =  U_ k  e.  om  ( A  ^m  k ) )
3534adantr 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  z K w )  ->  dom  K  =  U_ k  e. 
om  ( A  ^m  k ) )
3632, 35eleqtrd 2513 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  z K w )  ->  z  e.  U_ k  e.  om  ( A  ^m  k
) )
37 dmeq 5071 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  dom  y  =  dom  z )
3837fveq2d 5733 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  ( G `  dom  y )  =  ( G `  dom  z ) )
39 id 21 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  y  =  z )
4038, 39fveq12d 5735 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  (
( G `  dom  y ) `  y
)  =  ( ( G `  dom  z
) `  z )
)
4137, 40opeq12d 3993 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  <. dom  y ,  ( ( G `
 dom  y ) `  y ) >.  =  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. )
42 opex 4428 . . . . . . . . . . . . . . 15  |-  <. dom  z ,  ( ( G `
 dom  z ) `  z ) >.  e.  _V
4341, 26, 42fvmpt 5807 . . . . . . . . . . . . . 14  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  ->  ( K `  z )  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4436, 43syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  z K w )  ->  ( K `  z )  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4531, 44eqtr3d 2471 . . . . . . . . . . . 12  |-  ( (
ph  /\  z K w )  ->  w  =  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )
4645fveq2d 5733 . . . . . . . . . . 11  |-  ( (
ph  /\  z K w )  ->  ( 1st `  w )  =  ( 1st `  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. ) )
47 vex 2960 . . . . . . . . . . . . 13  |-  z  e. 
_V
4847dmex 5133 . . . . . . . . . . . 12  |-  dom  z  e.  _V
49 fvex 5743 . . . . . . . . . . . 12  |-  ( ( G `  dom  z
) `  z )  e.  _V
5048, 49op1st 6356 . . . . . . . . . . 11  |-  ( 1st `  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )  =  dom  z
5146, 50syl6eq 2485 . . . . . . . . . 10  |-  ( (
ph  /\  z K w )  ->  ( 1st `  w )  =  dom  z )
5251fveq2d 5733 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( G `  ( 1st `  w ) )  =  ( G `  dom  z ) )
5352cnveqd 5049 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  `' ( G `  ( 1st `  w ) )  =  `' ( G `  dom  z ) )
5445fveq2d 5733 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( 2nd `  w )  =  ( 2nd `  <. dom  z ,  ( ( G `  dom  z
) `  z ) >. ) )
5548, 49op2nd 6357 . . . . . . . . 9  |-  ( 2nd `  <. dom  z , 
( ( G `  dom  z ) `  z
) >. )  =  ( ( G `  dom  z ) `  z
)
5654, 55syl6eq 2485 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  ( 2nd `  w )  =  ( ( G `  dom  z ) `  z
) )
5753, 56fveq12d 5735 . . . . . . 7  |-  ( (
ph  /\  z K w )  ->  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) )  =  ( `' ( G `
 dom  z ) `  ( ( G `  dom  z ) `  z
) ) )
58 eliun 4098 . . . . . . . . . . . . 13  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  <->  E. k  e.  om  z  e.  ( A  ^m  k ) )
59 elmapi 7039 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ( A  ^m  k )  ->  z : k --> A )
6059adantl 454 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z : k --> A )
61 fdm 5596 . . . . . . . . . . . . . . . . 17  |-  ( z : k --> A  ->  dom  z  =  k
)
6260, 61syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  ->  dom  z  =  k
)
63 simpl 445 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
k  e.  om )
6462, 63eqeltrd 2511 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  ->  dom  z  e.  om )
65 simpr 449 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z  e.  ( A  ^m  k ) )
6662oveq2d 6098 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
( A  ^m  dom  z )  =  ( A  ^m  k ) )
6765, 66eleqtrrd 2514 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
z  e.  ( A  ^m  dom  z ) )
6864, 67jca 520 . . . . . . . . . . . . . 14  |-  ( ( k  e.  om  /\  z  e.  ( A  ^m  k ) )  -> 
( dom  z  e.  om 
/\  z  e.  ( A  ^m  dom  z
) ) )
6968rexlimiva 2826 . . . . . . . . . . . . 13  |-  ( E. k  e.  om  z  e.  ( A  ^m  k
)  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7058, 69sylbi 189 . . . . . . . . . . . 12  |-  ( z  e.  U_ k  e. 
om  ( A  ^m  k )  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7136, 70syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  z K w )  ->  ( dom  z  e.  om  /\  z  e.  ( A  ^m  dom  z ) ) )
7271simpld 447 . . . . . . . . . 10  |-  ( (
ph  /\  z K w )  ->  dom  z  e.  om )
7310, 11, 12, 13fseqenlem1 7906 . . . . . . . . . 10  |-  ( (
ph  /\  dom  z  e. 
om )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-> A )
7472, 73syldan 458 . . . . . . . . 9  |-  ( (
ph  /\  z K w )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-> A )
75 f1f1orn 5686 . . . . . . . . 9  |-  ( ( G `  dom  z
) : ( A  ^m  dom  z )
-1-1-> A  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-onto-> ran  ( G `  dom  z ) )
7674, 75syl 16 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  ( G `  dom  z ) : ( A  ^m  dom  z ) -1-1-onto-> ran  ( G `  dom  z ) )
7771simprd 451 . . . . . . . 8  |-  ( (
ph  /\  z K w )  ->  z  e.  ( A  ^m  dom  z ) )
78 f1ocnvfv1 6015 . . . . . . . 8  |-  ( ( ( G `  dom  z ) : ( A  ^m  dom  z
)
-1-1-onto-> ran  ( G `  dom  z )  /\  z  e.  ( A  ^m  dom  z ) )  -> 
( `' ( G `
 dom  z ) `  ( ( G `  dom  z ) `  z
) )  =  z )
7976, 77, 78syl2anc 644 . . . . . . 7  |-  ( (
ph  /\  z K w )  ->  ( `' ( G `  dom  z ) `  (
( G `  dom  z ) `  z
) )  =  z )
8057, 79eqtr2d 2470 . . . . . 6  |-  ( (
ph  /\  z K w )  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) )
8180ex 425 . . . . 5  |-  ( ph  ->  ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) ) )
8281alrimiv 1642 . . . 4  |-  ( ph  ->  A. z ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) ) )
83 mo2icl 3114 . . . 4  |-  ( A. z ( z K w  ->  z  =  ( `' ( G `  ( 1st `  w ) ) `  ( 2nd `  w ) ) )  ->  E* z  z K w )
8482, 83syl 16 . . 3  |-  ( ph  ->  E* z  z K w )
8584alrimiv 1642 . 2  |-  ( ph  ->  A. w E* z 
z K w )
86 dff12 5639 . 2  |-  ( K : U_ k  e. 
om  ( A  ^m  k ) -1-1-> ( om 
X.  A )  <->  ( K : U_ k  e.  om  ( A  ^m  k
) --> ( om  X.  A )  /\  A. w E* z  z K w ) )
8727, 85, 86sylanbrc 647 1  |-  ( ph  ->  K : U_ k  e.  om  ( A  ^m  k ) -1-1-> ( om 
X.  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726   E*wmo 2283   E.wrex 2707   _Vcvv 2957   (/)c0 3629   {csn 3815   <.cop 3818   U_ciun 4094   class class class wbr 4213    e. cmpt 4267   suc csuc 4584   omcom 4846    X. cxp 4877   `'ccnv 4878   dom cdm 4879   ran crn 4880    |` cres 4881   Fun wfun 5449   -->wf 5451   -1-1->wf1 5452   -1-1-onto->wf1o 5454   ` cfv 5455  (class class class)co 6082    e. cmpt2 6084   1stc1st 6348   2ndc2nd 6349  seq𝜔cseqom 6705    ^m cmap 7019
This theorem is referenced by:  fseqen  7909  pwfseqlem5  8539
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2418  ax-rep 4321  ax-sep 4331  ax-nul 4339  ax-pow 4378  ax-pr 4404  ax-un 4702
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2286  df-mo 2287  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-ral 2711  df-rex 2712  df-reu 2713  df-rab 2715  df-v 2959  df-sbc 3163  df-csb 3253  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3630  df-if 3741  df-pw 3802  df-sn 3821  df-pr 3822  df-tp 3823  df-op 3824  df-uni 4017  df-iun 4096  df-br 4214  df-opab 4268  df-mpt 4269  df-tr 4304  df-eprel 4495  df-id 4499  df-po 4504  df-so 4505  df-fr 4542  df-we 4544  df-ord 4585  df-on 4586  df-lim 4587  df-suc 4588  df-om 4847  df-xp 4885  df-rel 4886  df-cnv 4887  df-co 4888  df-dm 4889  df-rn 4890  df-res 4891  df-ima 4892  df-iota 5419  df-fun 5457  df-fn 5458  df-f 5459  df-f1 5460  df-fo 5461  df-f1o 5462  df-fv 5463  df-ov 6085  df-oprab 6086  df-mpt2 6087  df-1st 6350  df-2nd 6351  df-recs 6634  df-rdg 6669  df-seqom 6706  df-1o 6725  df-map 7021
  Copyright terms: Public domain W3C validator