MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsng Structured version   Unicode version

Theorem fsng 5907
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 26-Oct-2012.)
Assertion
Ref Expression
fsng  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } ) )

Proof of Theorem fsng
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 3825 . . . 4  |-  ( a  =  A  ->  { a }  =  { A } )
21feq2d 5581 . . 3  |-  ( a  =  A  ->  ( F : { a } --> { b }  <->  F : { A } --> { b } ) )
3 opeq1 3984 . . . . 5  |-  ( a  =  A  ->  <. a ,  b >.  =  <. A ,  b >. )
43sneqd 3827 . . . 4  |-  ( a  =  A  ->  { <. a ,  b >. }  =  { <. A ,  b
>. } )
54eqeq2d 2447 . . 3  |-  ( a  =  A  ->  ( F  =  { <. a ,  b >. }  <->  F  =  { <. A ,  b
>. } ) )
62, 5bibi12d 313 . 2  |-  ( a  =  A  ->  (
( F : {
a } --> { b }  <->  F  =  { <. a ,  b >. } )  <->  ( F : { A } --> { b }  <->  F  =  { <. A ,  b >. } ) ) )
7 sneq 3825 . . . 4  |-  ( b  =  B  ->  { b }  =  { B } )
8 feq3 5578 . . . 4  |-  ( { b }  =  { B }  ->  ( F : { A } --> { b }  <->  F : { A } --> { B } ) )
97, 8syl 16 . . 3  |-  ( b  =  B  ->  ( F : { A } --> { b }  <->  F : { A } --> { B } ) )
10 opeq2 3985 . . . . 5  |-  ( b  =  B  ->  <. A , 
b >.  =  <. A ,  B >. )
1110sneqd 3827 . . . 4  |-  ( b  =  B  ->  { <. A ,  b >. }  =  { <. A ,  B >. } )
1211eqeq2d 2447 . . 3  |-  ( b  =  B  ->  ( F  =  { <. A , 
b >. }  <->  F  =  { <. A ,  B >. } ) )
139, 12bibi12d 313 . 2  |-  ( b  =  B  ->  (
( F : { A } --> { b }  <-> 
F  =  { <. A ,  b >. } )  <-> 
( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } ) ) )
14 vex 2959 . . 3  |-  a  e. 
_V
15 vex 2959 . . 3  |-  b  e. 
_V
1614, 15fsn 5906 . 2  |-  ( F : { a } --> { b }  <->  F  =  { <. a ,  b
>. } )
176, 13, 16vtocl2g 3015 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {csn 3814   <.cop 3817   -->wf 5450
This theorem is referenced by:  xpsng  5909  ftpg  5916  axdc3lem4  8333  fseq1p1m1  11122  cats1un  11790  rngosn3  22014  esumsn  24456  bnj149  29246
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461
  Copyright terms: Public domain W3C validator