MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunf Unicode version

Theorem fsnunf 5734
Description: Adjoining a point to a function gives a function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunf  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T )

Proof of Theorem fsnunf
StepHypRef Expression
1 simp1 955 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  F : S --> T )
2 simp2l 981 . . . . 5  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  X  e.  V )
3 simp3 957 . . . . 5  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  Y  e.  T )
4 f1osng 5530 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X }
-1-1-onto-> { Y } )
52, 3, 4syl2anc 642 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X } -1-1-onto-> { Y } )
6 f1of 5488 . . . 4  |-  ( {
<. X ,  Y >. } : { X } -1-1-onto-> { Y }  ->  { <. X ,  Y >. } : { X } --> { Y } )
75, 6syl 15 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { <. X ,  Y >. } : { X } --> { Y } )
8 simp2r 982 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  -.  X  e.  S )
9 disjsn 3706 . . . 4  |-  ( ( S  i^i  { X } )  =  (/)  <->  -.  X  e.  S )
108, 9sylibr 203 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( S  i^i  { X }
)  =  (/) )
11 fun 5421 . . 3  |-  ( ( ( F : S --> T  /\  { <. X ,  Y >. } : { X } --> { Y }
)  /\  ( S  i^i  { X } )  =  (/) )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
) )
121, 7, 10, 11syl21anc 1181 . 2  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
) )
13 snssi 3775 . . . . 5  |-  ( Y  e.  T  ->  { Y }  C_  T )
14133ad2ant3 978 . . . 4  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  { Y }  C_  T )
15 ssequn2 3361 . . . 4  |-  ( { Y }  C_  T  <->  ( T  u.  { Y } )  =  T )
1614, 15sylib 188 . . 3  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( T  u.  { Y } )  =  T )
17 feq3 5393 . . 3  |-  ( ( T  u.  { Y } )  =  T  ->  ( ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> ( T  u.  { Y }
)  <->  ( F  u.  {
<. X ,  Y >. } ) : ( S  u.  { X }
) --> T ) )
1816, 17syl 15 . 2  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  (
( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X }
) --> ( T  u.  { Y } )  <->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T ) )
1912, 18mpbid 201 1  |-  ( ( F : S --> T  /\  ( X  e.  V  /\  -.  X  e.  S
)  /\  Y  e.  T )  ->  ( F  u.  { <. X ,  Y >. } ) : ( S  u.  { X } ) --> T )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   <.cop 3656   -->wf 5267   -1-1-onto->wf1o 5270
This theorem is referenced by:  fsnunf2  5735  fnchoice  27803
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278
  Copyright terms: Public domain W3C validator