MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsnunfv Unicode version

Theorem fsnunfv 5720
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
Assertion
Ref Expression
fsnunfv  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )

Proof of Theorem fsnunfv
StepHypRef Expression
1 dmres 4976 . . . . . . . . 9  |-  dom  ( F  |`  { X }
)  =  ( { X }  i^i  dom  F )
2 incom 3361 . . . . . . . . 9  |-  ( { X }  i^i  dom  F )  =  ( dom 
F  i^i  { X } )
31, 2eqtri 2303 . . . . . . . 8  |-  dom  ( F  |`  { X }
)  =  ( dom 
F  i^i  { X } )
4 disjsn 3693 . . . . . . . . 9  |-  ( ( dom  F  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  F )
54biimpri 197 . . . . . . . 8  |-  ( -.  X  e.  dom  F  ->  ( dom  F  i^i  { X } )  =  (/) )
63, 5syl5eq 2327 . . . . . . 7  |-  ( -.  X  e.  dom  F  ->  dom  ( F  |`  { X } )  =  (/) )
763ad2ant3 978 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  dom  ( F  |`  { X } )  =  (/) )
8 relres 4983 . . . . . . 7  |-  Rel  ( F  |`  { X }
)
9 reldm0 4896 . . . . . . 7  |-  ( Rel  ( F  |`  { X } )  ->  (
( F  |`  { X } )  =  (/)  <->  dom  ( F  |`  { X } )  =  (/) ) )
108, 9ax-mp 8 . . . . . 6  |-  ( ( F  |`  { X } )  =  (/)  <->  dom  ( F  |`  { X } )  =  (/) )
117, 10sylibr 203 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( F  |` 
{ X } )  =  (/) )
12 fnsng 5299 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. X ,  Y >. }  Fn  { X } )
13123adant3 975 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  { <. X ,  Y >. }  Fn  { X } )
14 fnresdm 5353 . . . . . 6  |-  ( {
<. X ,  Y >. }  Fn  { X }  ->  ( { <. X ,  Y >. }  |`  { X } )  =  { <. X ,  Y >. } )
1513, 14syl 15 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( { <. X ,  Y >. }  |`  { X } )  =  { <. X ,  Y >. } )
1611, 15uneq12d 3330 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  |`  { X }
)  u.  ( {
<. X ,  Y >. }  |`  { X } ) )  =  ( (/)  u. 
{ <. X ,  Y >. } ) )
17 resundir 4970 . . . 4  |-  ( ( F  u.  { <. X ,  Y >. } )  |`  { X } )  =  ( ( F  |`  { X } )  u.  ( { <. X ,  Y >. }  |`  { X } ) )
18 uncom 3319 . . . . 5  |-  ( (/)  u. 
{ <. X ,  Y >. } )  =  ( { <. X ,  Y >. }  u.  (/) )
19 un0 3479 . . . . 5  |-  ( {
<. X ,  Y >. }  u.  (/) )  =  { <. X ,  Y >. }
2018, 19eqtr2i 2304 . . . 4  |-  { <. X ,  Y >. }  =  ( (/)  u.  { <. X ,  Y >. } )
2116, 17, 203eqtr4g 2340 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  { X } )  =  { <. X ,  Y >. } )
2221fveq1d 5527 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( (
( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X
)  =  ( {
<. X ,  Y >. } `
 X ) )
23 snidg 3665 . . . 4  |-  ( X  e.  V  ->  X  e.  { X } )
24233ad2ant1 976 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  X  e.  { X } )
25 fvres 5542 . . 3  |-  ( X  e.  { X }  ->  ( ( ( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X )  =  ( ( F  u.  { <. X ,  Y >. } ) `  X ) )
2624, 25syl 15 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( (
( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X
)  =  ( ( F  u.  { <. X ,  Y >. } ) `
 X ) )
27 fvsng 5714 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( { <. X ,  Y >. } `  X
)  =  Y )
28273adant3 975 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( { <. X ,  Y >. } `
 X )  =  Y )
2922, 26, 283eqtr3d 2323 1  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684    u. cun 3150    i^i cin 3151   (/)c0 3455   {csn 3640   <.cop 3643   dom cdm 4689    |` cres 4691   Rel wrel 4694    Fn wfn 5250   ` cfv 5255
This theorem is referenced by:  hashf1lem1  11393  cats1un  11476  mapfzcons2  26796  islindf4  27308  fnchoice  27700
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-fv 5263
  Copyright terms: Public domain W3C validator