MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsplit Unicode version

Theorem fsplit 6223
Description: A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar 6222 in order to build compound functions such as  y  =  ( ( sqr `  x
)  +  ( abs `  x ) ). (Contributed by NM, 17-Sep-2007.)
Assertion
Ref Expression
fsplit  |-  `' ( 1st  |`  _I  )  =  ( x  e. 
_V  |->  <. x ,  x >. )

Proof of Theorem fsplit
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . . 5  |-  x  e. 
_V
2 vex 2791 . . . . 5  |-  y  e. 
_V
31, 2brcnv 4864 . . . 4  |-  ( x `' ( 1st  |`  _I  )
y  <->  y ( 1st  |`  _I  ) x )
41brres 4961 . . . . 5  |-  ( y ( 1st  |`  _I  )
x  <->  ( y 1st x  /\  y  e.  _I  ) )
5 19.42v 1846 . . . . . . 7  |-  ( E. z ( ( 1st `  y )  =  x  /\  y  =  <. z ,  z >. )  <->  ( ( 1st `  y
)  =  x  /\  E. z  y  =  <. z ,  z >. )
)
6 vex 2791 . . . . . . . . . . 11  |-  z  e. 
_V
76, 6op1std 6130 . . . . . . . . . 10  |-  ( y  =  <. z ,  z
>.  ->  ( 1st `  y
)  =  z )
87eqeq1d 2291 . . . . . . . . 9  |-  ( y  =  <. z ,  z
>.  ->  ( ( 1st `  y )  =  x  <-> 
z  =  x ) )
98pm5.32ri 619 . . . . . . . 8  |-  ( ( ( 1st `  y
)  =  x  /\  y  =  <. z ,  z >. )  <->  ( z  =  x  /\  y  =  <. z ,  z
>. ) )
109exbii 1569 . . . . . . 7  |-  ( E. z ( ( 1st `  y )  =  x  /\  y  =  <. z ,  z >. )  <->  E. z ( z  =  x  /\  y  = 
<. z ,  z >.
) )
11 fo1st 6139 . . . . . . . . . 10  |-  1st : _V -onto-> _V
12 fofn 5453 . . . . . . . . . 10  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
1311, 12ax-mp 8 . . . . . . . . 9  |-  1st  Fn  _V
14 fnbrfvb 5563 . . . . . . . . 9  |-  ( ( 1st  Fn  _V  /\  y  e.  _V )  ->  ( ( 1st `  y
)  =  x  <->  y 1st x ) )
1513, 2, 14mp2an 653 . . . . . . . 8  |-  ( ( 1st `  y )  =  x  <->  y 1st x )
16 dfid2 4311 . . . . . . . . . 10  |-  _I  =  { <. z ,  z
>.  |  z  =  z }
1716eleq2i 2347 . . . . . . . . 9  |-  ( y  e.  _I  <->  y  e.  {
<. z ,  z >.  |  z  =  z } )
18 nfe1 1706 . . . . . . . . . . 11  |-  F/ z E. z ( y  =  <. z ,  z
>.  /\  z  =  z )
191819.9 1783 . . . . . . . . . 10  |-  ( E. z E. z ( y  =  <. z ,  z >.  /\  z  =  z )  <->  E. z
( y  =  <. z ,  z >.  /\  z  =  z ) )
20 elopab 4272 . . . . . . . . . 10  |-  ( y  e.  { <. z ,  z >.  |  z  =  z }  <->  E. z E. z ( y  = 
<. z ,  z >.  /\  z  =  z
) )
21 equid 1644 . . . . . . . . . . . 12  |-  z  =  z
2221biantru 491 . . . . . . . . . . 11  |-  ( y  =  <. z ,  z
>. 
<->  ( y  =  <. z ,  z >.  /\  z  =  z ) )
2322exbii 1569 . . . . . . . . . 10  |-  ( E. z  y  =  <. z ,  z >.  <->  E. z
( y  =  <. z ,  z >.  /\  z  =  z ) )
2419, 20, 233bitr4i 268 . . . . . . . . 9  |-  ( y  e.  { <. z ,  z >.  |  z  =  z }  <->  E. z 
y  =  <. z ,  z >. )
2517, 24bitr2i 241 . . . . . . . 8  |-  ( E. z  y  =  <. z ,  z >.  <->  y  e.  _I  )
2615, 25anbi12i 678 . . . . . . 7  |-  ( ( ( 1st `  y
)  =  x  /\  E. z  y  =  <. z ,  z >. )  <->  ( y 1st x  /\  y  e.  _I  )
)
275, 10, 263bitr3ri 267 . . . . . 6  |-  ( ( y 1st x  /\  y  e.  _I  )  <->  E. z ( z  =  x  /\  y  = 
<. z ,  z >.
) )
28 id 19 . . . . . . . . 9  |-  ( z  =  x  ->  z  =  x )
2928, 28opeq12d 3804 . . . . . . . 8  |-  ( z  =  x  ->  <. z ,  z >.  =  <. x ,  x >. )
3029eqeq2d 2294 . . . . . . 7  |-  ( z  =  x  ->  (
y  =  <. z ,  z >.  <->  y  =  <. x ,  x >. ) )
311, 30ceqsexv 2823 . . . . . 6  |-  ( E. z ( z  =  x  /\  y  = 
<. z ,  z >.
)  <->  y  =  <. x ,  x >. )
3227, 31bitri 240 . . . . 5  |-  ( ( y 1st x  /\  y  e.  _I  )  <->  y  =  <. x ,  x >. )
334, 32bitri 240 . . . 4  |-  ( y ( 1st  |`  _I  )
x  <->  y  =  <. x ,  x >. )
343, 33bitri 240 . . 3  |-  ( x `' ( 1st  |`  _I  )
y  <->  y  =  <. x ,  x >. )
3534opabbii 4083 . 2  |-  { <. x ,  y >.  |  x `' ( 1st  |`  _I  )
y }  =  { <. x ,  y >.  |  y  =  <. x ,  x >. }
36 relcnv 5051 . . 3  |-  Rel  `' ( 1st  |`  _I  )
37 dfrel4v 5125 . . 3  |-  ( Rel  `' ( 1st  |`  _I  )  <->  `' ( 1st  |`  _I  )  =  { <. x ,  y
>.  |  x `' ( 1st  |`  _I  )
y } )
3836, 37mpbi 199 . 2  |-  `' ( 1st  |`  _I  )  =  { <. x ,  y
>.  |  x `' ( 1st  |`  _I  )
y }
39 mptv 4112 . 2  |-  ( x  e.  _V  |->  <. x ,  x >. )  =  { <. x ,  y >.  |  y  =  <. x ,  x >. }
4035, 38, 393eqtr4i 2313 1  |-  `' ( 1st  |`  _I  )  =  ( x  e. 
_V  |->  <. x ,  x >. )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643   class class class wbr 4023   {copab 4076    e. cmpt 4077    _I cid 4304   `'ccnv 4688    |` cres 4691   Rel wrel 4694    Fn wfn 5250   -onto->wfo 5253   ` cfv 5255   1stc1st 6120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-1st 6122
  Copyright terms: Public domain W3C validator