MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum Unicode version

Theorem fsum 12193
Description: The value of a sum over a nonempty finite set. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsum.1  |-  ( k  =  ( F `  n )  ->  B  =  C )
fsum.2  |-  ( ph  ->  M  e.  NN )
fsum.3  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
fsum.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsum.5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
Assertion
Ref Expression
fsum  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  seq  1 (  +  ,  G ) `  M
) )
Distinct variable groups:    B, n    C, k    k, n, F    ph, k, n    A, k, n    k, G, n   
k, M, n
Allowed substitution hints:    B( k)    C( n)

Proof of Theorem fsum
Dummy variables  f 
i  j  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 12159 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
2 fvex 5539 . . 3  |-  (  seq  1 (  +  ,  G ) `  M
)  e.  _V
3 nfcv 2419 . . . . . . . . 9  |-  F/_ j if ( k  e.  A ,  B ,  0 )
4 nfv 1605 . . . . . . . . . 10  |-  F/ k  j  e.  A
5 nfcsb1v 3113 . . . . . . . . . 10  |-  F/_ k [_ j  /  k ]_ B
6 nfcv 2419 . . . . . . . . . 10  |-  F/_ k
0
74, 5, 6nfif 3589 . . . . . . . . 9  |-  F/_ k if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 )
8 eleq1 2343 . . . . . . . . . 10  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
9 csbeq1a 3089 . . . . . . . . . 10  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
10 eqidd 2284 . . . . . . . . . 10  |-  ( k  =  j  ->  0  =  0 )
118, 9, 10ifbieq12d 3587 . . . . . . . . 9  |-  ( k  =  j  ->  if ( k  e.  A ,  B ,  0 )  =  if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 ) )
123, 7, 11cbvmpt 4110 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( j  e.  ZZ  |->  if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 ) )
13 fsum.4 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1413ralrimiva 2626 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
155nfel1 2429 . . . . . . . . . 10  |-  F/ k
[_ j  /  k ]_ B  e.  CC
169eleq1d 2349 . . . . . . . . . 10  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
1715, 16rspc 2878 . . . . . . . . 9  |-  ( j  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ j  /  k ]_ B  e.  CC )
)
1814, 17mpan9 455 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
19 fveq2 5525 . . . . . . . . . . 11  |-  ( n  =  i  ->  (
f `  n )  =  ( f `  i ) )
2019csbeq1d 3087 . . . . . . . . . 10  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B )
21 csbco 3090 . . . . . . . . . 10  |-  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B
2220, 21syl6eqr 2333 . . . . . . . . 9  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B )
2322cbvmptv 4111 . . . . . . . 8  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( i  e.  NN  |->  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B
)
2412, 18, 23summo 12190 . . . . . . 7  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
25 fsum.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
26 fsum.3 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
27 f1of 5472 . . . . . . . . . . . 12  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  F :
( 1 ... M
) --> A )
2826, 27syl 15 . . . . . . . . . . 11  |-  ( ph  ->  F : ( 1 ... M ) --> A )
29 ovex 5883 . . . . . . . . . . 11  |-  ( 1 ... M )  e. 
_V
30 fex 5749 . . . . . . . . . . 11  |-  ( ( F : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  _V )  ->  F  e.  _V )
3128, 29, 30sylancl 643 . . . . . . . . . 10  |-  ( ph  ->  F  e.  _V )
32 nnuz 10263 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3325, 32syl6eleq 2373 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
34 fsum.5 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
35 elfznn 10819 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... M )  ->  n  e.  NN )
3635adantl 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  n  e.  NN )
37 fvex 5539 . . . . . . . . . . . . . . . . 17  |-  ( G `
 n )  e. 
_V
3834, 37syl6eqelr 2372 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  C  e.  _V )
39 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  |->  C )  =  ( n  e.  NN  |->  C )
4039fvmpt2 5608 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  C  e.  _V )  ->  ( ( n  e.  NN  |->  C ) `  n )  =  C )
4136, 38, 40syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  C ) `  n
)  =  C )
4234, 41eqtr4d 2318 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  ( ( n  e.  NN  |->  C ) `
 n ) )
4342ralrimiva 2626 . . . . . . . . . . . . 13  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  =  ( ( n  e.  NN  |->  C ) `  n ) )
44 nfmpt1 4109 . . . . . . . . . . . . . . . 16  |-  F/_ n
( n  e.  NN  |->  C )
45 nfcv 2419 . . . . . . . . . . . . . . . 16  |-  F/_ n
k
4644, 45nffv 5532 . . . . . . . . . . . . . . 15  |-  F/_ n
( ( n  e.  NN  |->  C ) `  k )
4746nfeq2 2430 . . . . . . . . . . . . . 14  |-  F/ n
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k )
48 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
49 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
( n  e.  NN  |->  C ) `  n
)  =  ( ( n  e.  NN  |->  C ) `  k ) )
5048, 49eqeq12d 2297 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( G `  n
)  =  ( ( n  e.  NN  |->  C ) `  n )  <-> 
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k ) ) )
5147, 50rspc 2878 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... M )  ->  ( A. n  e.  (
1 ... M ) ( G `  n )  =  ( ( n  e.  NN  |->  C ) `
 n )  -> 
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k ) ) )
5243, 51mpan9 455 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( G `  k )  =  ( ( n  e.  NN  |->  C ) `
 k ) )
5333, 52seqfveq 11070 . . . . . . . . . . 11  |-  ( ph  ->  (  seq  1 (  +  ,  G ) `
 M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  C ) ) `  M ) )
5426, 53jca 518 . . . . . . . . . 10  |-  ( ph  ->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  C ) ) `  M
) ) )
55 f1oeq1 5463 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f : ( 1 ... M ) -1-1-onto-> A  <->  F :
( 1 ... M
)
-1-1-onto-> A ) )
56 fveq1 5524 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  F  ->  (
f `  n )  =  ( F `  n ) )
5756csbeq1d 3087 . . . . . . . . . . . . . . . . 17  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( F `  n )  /  k ]_ B )
58 fvex 5539 . . . . . . . . . . . . . . . . . 18  |-  ( F `
 n )  e. 
_V
59 nfcv 2419 . . . . . . . . . . . . . . . . . 18  |-  F/_ k C
60 fsum.1 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( F `  n )  ->  B  =  C )
6158, 59, 60csbief 3122 . . . . . . . . . . . . . . . . 17  |-  [_ ( F `  n )  /  k ]_ B  =  C
6257, 61syl6eq 2331 . . . . . . . . . . . . . . . 16  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  C )
6362mpteq2dv 4107 . . . . . . . . . . . . . . 15  |-  ( f  =  F  ->  (
n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )  =  ( n  e.  NN  |->  C ) )
6463seqeq3d 11054 . . . . . . . . . . . . . 14  |-  ( f  =  F  ->  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )  =  seq  1 (  +  ,  ( n  e.  NN  |->  C ) ) )
6564fveq1d 5527 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  C ) ) `
 M ) )
6665eqeq2d 2294 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
(  seq  1 (  +  ,  G ) `
 M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  M
)  <->  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  C ) ) `  M
) ) )
6755, 66anbi12d 691 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) )  <->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M
)  =  (  seq  1 (  +  , 
( n  e.  NN  |->  C ) ) `  M ) ) ) )
6867spcegv 2869 . . . . . . . . . 10  |-  ( F  e.  _V  ->  (
( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  C ) ) `  M
) )  ->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
6931, 54, 68sylc 56 . . . . . . . . 9  |-  ( ph  ->  E. f ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M
)  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )
70 oveq2 5866 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
1 ... m )  =  ( 1 ... M
) )
71 f1oeq2 5464 . . . . . . . . . . . . 13  |-  ( ( 1 ... m )  =  ( 1 ... M )  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
7270, 71syl 15 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
73 fveq2 5525 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  M ) )
7473eqeq2d 2294 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
(  seq  1 (  +  ,  G ) `
 M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
)  <->  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )
7572, 74anbi12d 691 . . . . . . . . . . 11  |-  ( m  =  M  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M
)  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
7675exbidv 1612 . . . . . . . . . 10  |-  ( m  =  M  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
7776rspcev 2884 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  E. f ( f : ( 1 ... M
)
-1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
7825, 69, 77syl2anc 642 . . . . . . . 8  |-  ( ph  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
7978olcd 382 . . . . . . 7  |-  ( ph  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
)  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
80 breq2 4027 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  (  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x  <->  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1 (  +  ,  G ) `  M
) ) )
8180anbi2d 684 . . . . . . . . . . . . 13  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  <->  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
) ) )
8281rexbidv 2564 . . . . . . . . . . . 12  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
) ) )
83 eqeq1 2289 . . . . . . . . . . . . . . 15  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )  <->  (  seq  1 (  +  ,  G ) `  M
)  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
8483anbi2d 684 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M
)  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
8584exbidv 1612 . . . . . . . . . . . . 13  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
8685rexbidv 2564 . . . . . . . . . . . 12  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
8782, 86orbi12d 690 . . . . . . . . . . 11  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
)  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) ) )
8887moi2 2946 . . . . . . . . . 10  |-  ( ( ( (  seq  1
(  +  ,  G
) `  M )  e.  _V  /\  E* x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
)  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq  1
(  +  ,  G
) `  M )
)
892, 88mpanl1 661 . . . . . . . . 9  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
)  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq  1
(  +  ,  G
) `  M )
)
9089ancom2s 777 . . . . . . . 8  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1 (  +  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq  1
(  +  ,  G
) `  M )
)
9190expr 598 . . . . . . 7  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
)  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  ->  x  =  (  seq  1 (  +  ,  G ) `  M ) ) )
9224, 79, 91syl2anc 642 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  ->  x  =  (  seq  1 (  +  ,  G ) `  M ) ) )
9379, 87syl5ibrcom 213 . . . . . 6  |-  ( ph  ->  ( x  =  (  seq  1 (  +  ,  G ) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )
9492, 93impbid 183 . . . . 5  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  <-> 
x  =  (  seq  1 (  +  ,  G ) `  M
) ) )
9594adantr 451 . . . 4  |-  ( (
ph  /\  (  seq  1 (  +  ,  G ) `  M
)  e.  _V )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  <-> 
x  =  (  seq  1 (  +  ,  G ) `  M
) ) )
9695iota5 5239 . . 3  |-  ( (
ph  /\  (  seq  1 (  +  ,  G ) `  M
)  e.  _V )  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  (  seq  1 (  +  ,  G ) `  M
) )
972, 96mpan2 652 . 2  |-  ( ph  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  (  seq  1 (  +  ,  G ) `  M
) )
981, 97syl5eq 2327 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  seq  1 (  +  ,  G ) `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   E*wmo 2144   A.wral 2543   E.wrex 2544   _Vcvv 2788   [_csb 3081    C_ wss 3152   ifcif 3565   class class class wbr 4023    e. cmpt 4077   iotacio 5217   -->wf 5251   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    + caddc 8740   NNcn 9746   ZZcz 10024   ZZ>=cuz 10230   ...cfz 10782    seq cseq 11046    ~~> cli 11958   sum_csu 12158
This theorem is referenced by:  sumz  12195  fsumf1o  12196  fsumcl2lem  12204  fsumadd  12211  sumsn  12213  fsummulc2  12246  fsumconst  12252  fsumrelem  12265  gsumfsum  16439  sumsnd  27697
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159
  Copyright terms: Public domain W3C validator