MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum Structured version   Unicode version

Theorem fsum 12506
Description: The value of a sum over a nonempty finite set. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
fsum.1  |-  ( k  =  ( F `  n )  ->  B  =  C )
fsum.2  |-  ( ph  ->  M  e.  NN )
fsum.3  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
fsum.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsum.5  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
Assertion
Ref Expression
fsum  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  seq  1 (  +  ,  G ) `  M
) )
Distinct variable groups:    B, n    C, k    k, n, F    ph, k, n    A, k, n    k, G, n   
k, M, n
Allowed substitution hints:    B( k)    C( n)

Proof of Theorem fsum
Dummy variables  f 
i  j  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 12472 . 2  |-  sum_ k  e.  A  B  =  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
2 fvex 5734 . . 3  |-  (  seq  1 (  +  ,  G ) `  M
)  e.  _V
3 nfcv 2571 . . . . . . . . 9  |-  F/_ j if ( k  e.  A ,  B ,  0 )
4 nfv 1629 . . . . . . . . . 10  |-  F/ k  j  e.  A
5 nfcsb1v 3275 . . . . . . . . . 10  |-  F/_ k [_ j  /  k ]_ B
6 nfcv 2571 . . . . . . . . . 10  |-  F/_ k
0
74, 5, 6nfif 3755 . . . . . . . . 9  |-  F/_ k if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 )
8 eleq1 2495 . . . . . . . . . 10  |-  ( k  =  j  ->  (
k  e.  A  <->  j  e.  A ) )
9 csbeq1a 3251 . . . . . . . . . 10  |-  ( k  =  j  ->  B  =  [_ j  /  k ]_ B )
10 eqidd 2436 . . . . . . . . . 10  |-  ( k  =  j  ->  0  =  0 )
118, 9, 10ifbieq12d 3753 . . . . . . . . 9  |-  ( k  =  j  ->  if ( k  e.  A ,  B ,  0 )  =  if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 ) )
123, 7, 11cbvmpt 4291 . . . . . . . 8  |-  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) )  =  ( j  e.  ZZ  |->  if ( j  e.  A ,  [_ j  /  k ]_ B ,  0 ) )
13 fsum.4 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1413ralrimiva 2781 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
155nfel1 2581 . . . . . . . . . 10  |-  F/ k
[_ j  /  k ]_ B  e.  CC
169eleq1d 2501 . . . . . . . . . 10  |-  ( k  =  j  ->  ( B  e.  CC  <->  [_ j  / 
k ]_ B  e.  CC ) )
1715, 16rspc 3038 . . . . . . . . 9  |-  ( j  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ j  /  k ]_ B  e.  CC )
)
1814, 17mpan9 456 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  [_ j  /  k ]_ B  e.  CC )
19 fveq2 5720 . . . . . . . . . . 11  |-  ( n  =  i  ->  (
f `  n )  =  ( f `  i ) )
2019csbeq1d 3249 . . . . . . . . . 10  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B )
21 csbco 3252 . . . . . . . . . 10  |-  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B  =  [_ ( f `  i )  /  k ]_ B
2220, 21syl6eqr 2485 . . . . . . . . 9  |-  ( n  =  i  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( f `  i )  /  j ]_ [_ j  /  k ]_ B )
2322cbvmptv 4292 . . . . . . . 8  |-  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
)  =  ( i  e.  NN  |->  [_ (
f `  i )  /  j ]_ [_ j  /  k ]_ B
)
2412, 18, 23summo 12503 . . . . . . 7  |-  ( ph  ->  E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
25 fsum.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  NN )
26 fsum.3 . . . . . . . . . . . 12  |-  ( ph  ->  F : ( 1 ... M ) -1-1-onto-> A )
27 f1of 5666 . . . . . . . . . . . 12  |-  ( F : ( 1 ... M ) -1-1-onto-> A  ->  F :
( 1 ... M
) --> A )
2826, 27syl 16 . . . . . . . . . . 11  |-  ( ph  ->  F : ( 1 ... M ) --> A )
29 ovex 6098 . . . . . . . . . . 11  |-  ( 1 ... M )  e. 
_V
30 fex 5961 . . . . . . . . . . 11  |-  ( ( F : ( 1 ... M ) --> A  /\  ( 1 ... M )  e.  _V )  ->  F  e.  _V )
3128, 29, 30sylancl 644 . . . . . . . . . 10  |-  ( ph  ->  F  e.  _V )
32 nnuz 10513 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
3325, 32syl6eleq 2525 . . . . . . . . . . . 12  |-  ( ph  ->  M  e.  ( ZZ>= ` 
1 ) )
34 fsum.5 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  C )
35 elfznn 11072 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( 1 ... M )  ->  n  e.  NN )
3635adantl 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  n  e.  NN )
37 fvex 5734 . . . . . . . . . . . . . . . . 17  |-  ( G `
 n )  e. 
_V
3834, 37syl6eqelr 2524 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  C  e.  _V )
39 eqid 2435 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  |->  C )  =  ( n  e.  NN  |->  C )
4039fvmpt2 5804 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  C  e.  _V )  ->  ( ( n  e.  NN  |->  C ) `  n )  =  C )
4136, 38, 40syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  (
( n  e.  NN  |->  C ) `  n
)  =  C )
4234, 41eqtr4d 2470 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... M
) )  ->  ( G `  n )  =  ( ( n  e.  NN  |->  C ) `
 n ) )
4342ralrimiva 2781 . . . . . . . . . . . . 13  |-  ( ph  ->  A. n  e.  ( 1 ... M ) ( G `  n
)  =  ( ( n  e.  NN  |->  C ) `  n ) )
44 nffvmpt1 5728 . . . . . . . . . . . . . . 15  |-  F/_ n
( ( n  e.  NN  |->  C ) `  k )
4544nfeq2 2582 . . . . . . . . . . . . . 14  |-  F/ n
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k )
46 fveq2 5720 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
47 fveq2 5720 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
( n  e.  NN  |->  C ) `  n
)  =  ( ( n  e.  NN  |->  C ) `  k ) )
4846, 47eqeq12d 2449 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  (
( G `  n
)  =  ( ( n  e.  NN  |->  C ) `  n )  <-> 
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k ) ) )
4945, 48rspc 3038 . . . . . . . . . . . . 13  |-  ( k  e.  ( 1 ... M )  ->  ( A. n  e.  (
1 ... M ) ( G `  n )  =  ( ( n  e.  NN  |->  C ) `
 n )  -> 
( G `  k
)  =  ( ( n  e.  NN  |->  C ) `  k ) ) )
5043, 49mpan9 456 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  ( 1 ... M
) )  ->  ( G `  k )  =  ( ( n  e.  NN  |->  C ) `
 k ) )
5133, 50seqfveq 11339 . . . . . . . . . . 11  |-  ( ph  ->  (  seq  1 (  +  ,  G ) `
 M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  C ) ) `  M ) )
5226, 51jca 519 . . . . . . . . . 10  |-  ( ph  ->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  C ) ) `  M
) ) )
53 f1oeq1 5657 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
f : ( 1 ... M ) -1-1-onto-> A  <->  F :
( 1 ... M
)
-1-1-onto-> A ) )
54 fveq1 5719 . . . . . . . . . . . . . . . . . 18  |-  ( f  =  F  ->  (
f `  n )  =  ( F `  n ) )
5554csbeq1d 3249 . . . . . . . . . . . . . . . . 17  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  [_ ( F `  n )  /  k ]_ B )
56 fvex 5734 . . . . . . . . . . . . . . . . . 18  |-  ( F `
 n )  e. 
_V
57 nfcv 2571 . . . . . . . . . . . . . . . . . 18  |-  F/_ k C
58 fsum.1 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  ( F `  n )  ->  B  =  C )
5956, 57, 58csbief 3284 . . . . . . . . . . . . . . . . 17  |-  [_ ( F `  n )  /  k ]_ B  =  C
6055, 59syl6eq 2483 . . . . . . . . . . . . . . . 16  |-  ( f  =  F  ->  [_ (
f `  n )  /  k ]_ B  =  C )
6160mpteq2dv 4288 . . . . . . . . . . . . . . 15  |-  ( f  =  F  ->  (
n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B )  =  ( n  e.  NN  |->  C ) )
6261seqeq3d 11323 . . . . . . . . . . . . . 14  |-  ( f  =  F  ->  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) )  =  seq  1 (  +  ,  ( n  e.  NN  |->  C ) ) )
6362fveq1d 5722 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  C ) ) `
 M ) )
6463eqeq2d 2446 . . . . . . . . . . . 12  |-  ( f  =  F  ->  (
(  seq  1 (  +  ,  G ) `
 M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  M
)  <->  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  C ) ) `  M
) ) )
6553, 64anbi12d 692 . . . . . . . . . . 11  |-  ( f  =  F  ->  (
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) )  <->  ( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M
)  =  (  seq  1 (  +  , 
( n  e.  NN  |->  C ) ) `  M ) ) ) )
6665spcegv 3029 . . . . . . . . . 10  |-  ( F  e.  _V  ->  (
( F : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  C ) ) `  M
) )  ->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
6731, 52, 66sylc 58 . . . . . . . . 9  |-  ( ph  ->  E. f ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M
)  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )
68 oveq2 6081 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (
1 ... m )  =  ( 1 ... M
) )
69 f1oeq2 5658 . . . . . . . . . . . . 13  |-  ( ( 1 ... m )  =  ( 1 ... M )  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
7068, 69syl 16 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
f : ( 1 ... m ) -1-1-onto-> A  <->  f :
( 1 ... M
)
-1-1-onto-> A ) )
71 fveq2 5720 . . . . . . . . . . . . 13  |-  ( m  =  M  ->  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  M ) )
7271eqeq2d 2446 . . . . . . . . . . . 12  |-  ( m  =  M  ->  (
(  seq  1 (  +  ,  G ) `
 M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ (
f `  n )  /  k ]_ B
) ) `  m
)  <->  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )
7370, 72anbi12d 692 . . . . . . . . . . 11  |-  ( m  =  M  ->  (
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M
)  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
7473exbidv 1636 . . . . . . . . . 10  |-  ( m  =  M  ->  ( E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... M ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) ) )
7574rspcev 3044 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  E. f ( f : ( 1 ... M
)
-1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  M ) ) )  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
7625, 67, 75syl2anc 643 . . . . . . . 8  |-  ( ph  ->  E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
7776olcd 383 . . . . . . 7  |-  ( ph  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
)  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
78 breq2 4208 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  (  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x  <->  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1 (  +  ,  G ) `  M
) ) )
7978anbi2d 685 . . . . . . . . . . . . 13  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  <->  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
) ) )
8079rexbidv 2718 . . . . . . . . . . . 12  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  <->  E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
) ) )
81 eqeq1 2441 . . . . . . . . . . . . . . 15  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m )  <->  (  seq  1 (  +  ,  G ) `  M
)  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )
8281anbi2d 685 . . . . . . . . . . . . . 14  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) )  <->  ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M
)  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
8382exbidv 1636 . . . . . . . . . . . . 13  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )
8483rexbidv 2718 . . . . . . . . . . . 12  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) )  <->  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )
8580, 84orbi12d 691 . . . . . . . . . . 11  |-  ( x  =  (  seq  1
(  +  ,  G
) `  M )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  <-> 
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
)  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) ) )
8685moi2 3107 . . . . . . . . . 10  |-  ( ( ( (  seq  1
(  +  ,  G
) `  M )  e.  _V  /\  E* x
( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
)  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq  1
(  +  ,  G
) `  M )
)
872, 86mpanl1 662 . . . . . . . . 9  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
)  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq  1
(  +  ,  G
) `  M )
)
8887ancom2s 778 . . . . . . . 8  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1 (  +  ,  G ) `  M
) )  \/  E. m  e.  NN  E. f
( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1
(  +  ,  G
) `  M )  =  (  seq  1
(  +  ,  ( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) ) )  ->  x  =  (  seq  1
(  +  ,  G
) `  M )
)
8988expr 599 . . . . . . 7  |-  ( ( E* x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m
)  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  /\  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  (  seq  1
(  +  ,  G
) `  M )
)  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  (  seq  1 (  +  ,  G ) `  M )  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) ) )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) )  ->  x  =  (  seq  1 (  +  ,  G ) `  M ) ) )
9024, 77, 89syl2anc 643 . . . . . 6  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  ->  x  =  (  seq  1 (  +  ,  G ) `  M ) ) )
9177, 85syl5ibrcom 214 . . . . . 6  |-  ( ph  ->  ( x  =  (  seq  1 (  +  ,  G ) `  M )  ->  ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) ) )
9290, 91impbid 184 . . . . 5  |-  ( ph  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  <-> 
x  =  (  seq  1 (  +  ,  G ) `  M
) ) )
9392adantr 452 . . . 4  |-  ( (
ph  /\  (  seq  1 (  +  ,  G ) `  M
)  e.  _V )  ->  ( ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  ,  ( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/ 
E. m  e.  NN  E. f ( f : ( 1 ... m
)
-1-1-onto-> A  /\  x  =  (  seq  1 (  +  ,  ( n  e.  NN  |->  [_ ( f `  n )  /  k ]_ B ) ) `  m ) ) )  <-> 
x  =  (  seq  1 (  +  ,  G ) `  M
) ) )
9493iota5 5430 . . 3  |-  ( (
ph  /\  (  seq  1 (  +  ,  G ) `  M
)  e.  _V )  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  (  seq  1 (  +  ,  G ) `  M
) )
952, 94mpan2 653 . 2  |-  ( ph  ->  ( iota x ( E. m  e.  ZZ  ( A  C_  ( ZZ>= `  m )  /\  seq  m (  +  , 
( k  e.  ZZ  |->  if ( k  e.  A ,  B ,  0 ) ) )  ~~>  x )  \/  E. m  e.  NN  E. f ( f : ( 1 ... m ) -1-1-onto-> A  /\  x  =  (  seq  1 (  +  , 
( n  e.  NN  |->  [_ ( f `  n
)  /  k ]_ B ) ) `  m ) ) ) )  =  (  seq  1 (  +  ,  G ) `  M
) )
961, 95syl5eq 2479 1  |-  ( ph  -> 
sum_ k  e.  A  B  =  (  seq  1 (  +  ,  G ) `  M
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   E*wmo 2281   A.wral 2697   E.wrex 2698   _Vcvv 2948   [_csb 3243    C_ wss 3312   ifcif 3731   class class class wbr 4204    e. cmpt 4258   iotacio 5408   -->wf 5442   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   CCcc 8980   0cc0 8982   1c1 8983    + caddc 8985   NNcn 9992   ZZcz 10274   ZZ>=cuz 10480   ...cfz 11035    seq cseq 11315    ~~> cli 12270   sum_csu 12471
This theorem is referenced by:  sumz  12508  fsumf1o  12509  fsumcl2lem  12517  fsumadd  12524  sumsn  12526  fsummulc2  12559  fsumconst  12565  fsumrelem  12578  gsumfsum  16758  sumsnd  27664
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472
  Copyright terms: Public domain W3C validator