MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum00 Unicode version

Theorem fsum00 12256
Description: A sum of nonnegative numbers is zero iff all terms are zero. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumge0.1  |-  ( ph  ->  A  e.  Fin )
fsumge0.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
fsumge0.3  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
Assertion
Ref Expression
fsum00  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  = 
0 ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsum00
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 fsumge0.1 . . . . . . . . . 10  |-  ( ph  ->  A  e.  Fin )
21adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  A  e.  Fin )
3 fsumge0.2 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  RR )
43adantlr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  A )  ->  B  e.  RR )
5 fsumge0.3 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  A )  ->  0  <_  B )
65adantlr 695 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  A )  /\  k  e.  A )  ->  0  <_  B )
7 snssi 3759 . . . . . . . . . 10  |-  ( m  e.  A  ->  { m }  C_  A )
87adantl 452 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  A )  ->  { m }  C_  A )
92, 4, 6, 8fsumless 12254 . . . . . . . 8  |-  ( (
ph  /\  m  e.  A )  ->  sum_ k  e.  { m } B  <_ 
sum_ k  e.  A  B )
109adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  {
m } B  <_  sum_ k  e.  A  B
)
11 simpr 447 . . . . . . . 8  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  m  e.  A )
123, 5jca 518 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( B  e.  RR  /\  0  <_  B ) )
1312ralrimiva 2626 . . . . . . . . . . . 12  |-  ( ph  ->  A. k  e.  A  ( B  e.  RR  /\  0  <_  B )
)
1413adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. k  e.  A  ( B  e.  RR  /\  0  <_  B ) )
15 nfcsb1v 3113 . . . . . . . . . . . . . 14  |-  F/_ k [_ m  /  k ]_ B
1615nfel1 2429 . . . . . . . . . . . . 13  |-  F/ k
[_ m  /  k ]_ B  e.  RR
17 nfcv 2419 . . . . . . . . . . . . . 14  |-  F/_ k
0
18 nfcv 2419 . . . . . . . . . . . . . 14  |-  F/_ k  <_
1917, 18, 15nfbr 4067 . . . . . . . . . . . . 13  |-  F/ k 0  <_  [_ m  / 
k ]_ B
2016, 19nfan 1771 . . . . . . . . . . . 12  |-  F/ k ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B )
21 csbeq1a 3089 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  B  =  [_ m  /  k ]_ B )
2221eleq1d 2349 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  ( B  e.  RR  <->  [_ m  / 
k ]_ B  e.  RR ) )
2321breq2d 4035 . . . . . . . . . . . . 13  |-  ( k  =  m  ->  (
0  <_  B  <->  0  <_  [_ m  /  k ]_ B ) )
2422, 23anbi12d 691 . . . . . . . . . . . 12  |-  ( k  =  m  ->  (
( B  e.  RR  /\  0  <_  B )  <->  (
[_ m  /  k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) ) )
2520, 24rspc 2878 . . . . . . . . . . 11  |-  ( m  e.  A  ->  ( A. k  e.  A  ( B  e.  RR  /\  0  <_  B )  ->  ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) ) )
2614, 25mpan9 455 . . . . . . . . . 10  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  ( [_ m  / 
k ]_ B  e.  RR  /\  0  <_  [_ m  / 
k ]_ B ) )
2726simpld 445 . . . . . . . . 9  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  RR )
2827recnd 8861 . . . . . . . 8  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  e.  CC )
29 sumsns 12215 . . . . . . . 8  |-  ( ( m  e.  A  /\  [_ m  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
m } B  = 
[_ m  /  k ]_ B )
3011, 28, 29syl2anc 642 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  {
m } B  = 
[_ m  /  k ]_ B )
31 simplr 731 . . . . . . 7  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  -> 
sum_ k  e.  A  B  =  0 )
3210, 30, 313brtr3d 4052 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  <_  0 )
3326simprd 449 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  0  <_  [_ m  / 
k ]_ B )
34 0re 8838 . . . . . . 7  |-  0  e.  RR
35 letri3 8907 . . . . . . 7  |-  ( (
[_ m  /  k ]_ B  e.  RR  /\  0  e.  RR )  ->  ( [_ m  /  k ]_ B  =  0  <->  ( [_ m  /  k ]_ B  <_  0  /\  0  <_  [_ m  /  k ]_ B ) ) )
3627, 34, 35sylancl 643 . . . . . 6  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  ( [_ m  / 
k ]_ B  =  0  <-> 
( [_ m  /  k ]_ B  <_  0  /\  0  <_  [_ m  / 
k ]_ B ) ) )
3732, 33, 36mpbir2and 888 . . . . 5  |-  ( ( ( ph  /\  sum_ k  e.  A  B  =  0 )  /\  m  e.  A )  ->  [_ m  /  k ]_ B  =  0
)
3837ralrimiva 2626 . . . 4  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. m  e.  A  [_ m  / 
k ]_ B  =  0 )
39 nfv 1605 . . . . 5  |-  F/ m  B  =  0
4015nfeq1 2428 . . . . 5  |-  F/ k
[_ m  /  k ]_ B  =  0
4121eqeq1d 2291 . . . . 5  |-  ( k  =  m  ->  ( B  =  0  <->  [_ m  / 
k ]_ B  =  0 ) )
4239, 40, 41cbvral 2760 . . . 4  |-  ( A. k  e.  A  B  =  0  <->  A. m  e.  A  [_ m  / 
k ]_ B  =  0 )
4338, 42sylibr 203 . . 3  |-  ( (
ph  /\  sum_ k  e.  A  B  =  0 )  ->  A. k  e.  A  B  = 
0 )
4443ex 423 . 2  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  ->  A. k  e.  A  B  =  0 ) )
45 sumz 12195 . . . . 5  |-  ( ( A  C_  ( ZZ>= ` 
0 )  \/  A  e.  Fin )  ->  sum_ k  e.  A  0  = 
0 )
4645olcs 384 . . . 4  |-  ( A  e.  Fin  ->  sum_ k  e.  A  0  = 
0 )
47 sumeq2 12167 . . . . 5  |-  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  0 )
4847eqeq1d 2291 . . . 4  |-  ( A. k  e.  A  B  =  0  ->  ( sum_ k  e.  A  B  =  0  <->  sum_ k  e.  A  0  =  0 ) )
4946, 48syl5ibrcom 213 . . 3  |-  ( A  e.  Fin  ->  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  0 ) )
501, 49syl 15 . 2  |-  ( ph  ->  ( A. k  e.  A  B  =  0  ->  sum_ k  e.  A  B  =  0 ) )
5144, 50impbid 183 1  |-  ( ph  ->  ( sum_ k  e.  A  B  =  0  <->  A. k  e.  A  B  = 
0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   [_csb 3081    C_ wss 3152   {csn 3640   class class class wbr 4023   ` cfv 5255   Fincfn 6863   CCcc 8735   RRcr 8736   0cc0 8737    <_ cle 8868   ZZ>=cuz 10230   sum_csu 12158
This theorem is referenced by:  ramcl  13076  jensen  20283  eqeelen  24532  axcgrid  24544  rrnmet  26553
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159
  Copyright terms: Public domain W3C validator