MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum1p Unicode version

Theorem fsum1p 12234
Description: Separate out the first term in a finite sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsumm1.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
fsumm1.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
fsum1p.3  |-  ( k  =  M  ->  A  =  B )
Assertion
Ref Expression
fsum1p  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
Distinct variable groups:    B, k    k, M    k, N    ph, k
Allowed substitution hint:    A( k)

Proof of Theorem fsum1p
StepHypRef Expression
1 fsumm1.1 . . . . . . 7  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 10251 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 15 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
4 fzsn 10849 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
53, 4syl 15 . . . . 5  |-  ( ph  ->  ( M ... M
)  =  { M } )
65ineq1d 3382 . . . 4  |-  ( ph  ->  ( ( M ... M )  i^i  (
( M  +  1 ) ... N ) )  =  ( { M }  i^i  (
( M  +  1 ) ... N ) ) )
73zred 10133 . . . . . 6  |-  ( ph  ->  M  e.  RR )
87ltp1d 9703 . . . . 5  |-  ( ph  ->  M  <  ( M  +  1 ) )
9 fzdisj 10833 . . . . 5  |-  ( M  <  ( M  + 
1 )  ->  (
( M ... M
)  i^i  ( ( M  +  1 ) ... N ) )  =  (/) )
108, 9syl 15 . . . 4  |-  ( ph  ->  ( ( M ... M )  i^i  (
( M  +  1 ) ... N ) )  =  (/) )
116, 10eqtr3d 2330 . . 3  |-  ( ph  ->  ( { M }  i^i  ( ( M  + 
1 ) ... N
) )  =  (/) )
12 eluzfz1 10819 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
131, 12syl 15 . . . . 5  |-  ( ph  ->  M  e.  ( M ... N ) )
14 fzsplit 10832 . . . . 5  |-  ( M  e.  ( M ... N )  ->  ( M ... N )  =  ( ( M ... M )  u.  (
( M  +  1 ) ... N ) ) )
1513, 14syl 15 . . . 4  |-  ( ph  ->  ( M ... N
)  =  ( ( M ... M )  u.  ( ( M  +  1 ) ... N ) ) )
165uneq1d 3341 . . . 4  |-  ( ph  ->  ( ( M ... M )  u.  (
( M  +  1 ) ... N ) )  =  ( { M }  u.  (
( M  +  1 ) ... N ) ) )
1715, 16eqtrd 2328 . . 3  |-  ( ph  ->  ( M ... N
)  =  ( { M }  u.  (
( M  +  1 ) ... N ) ) )
18 fzfid 11051 . . 3  |-  ( ph  ->  ( M ... N
)  e.  Fin )
19 fsumm1.2 . . 3  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  A  e.  CC )
2011, 17, 18, 19fsumsplit 12228 . 2  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( sum_ k  e.  { M } A  +  sum_ k  e.  ( ( M  + 
1 ) ... N
) A ) )
2119ralrimiva 2639 . . . . 5  |-  ( ph  ->  A. k  e.  ( M ... N ) A  e.  CC )
22 fsum1p.3 . . . . . . 7  |-  ( k  =  M  ->  A  =  B )
2322eleq1d 2362 . . . . . 6  |-  ( k  =  M  ->  ( A  e.  CC  <->  B  e.  CC ) )
2423rspcv 2893 . . . . 5  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) A  e.  CC  ->  B  e.  CC ) )
2513, 21, 24sylc 56 . . . 4  |-  ( ph  ->  B  e.  CC )
2622sumsn 12229 . . . 4  |-  ( ( M  e.  ZZ  /\  B  e.  CC )  -> 
sum_ k  e.  { M } A  =  B )
273, 25, 26syl2anc 642 . . 3  |-  ( ph  -> 
sum_ k  e.  { M } A  =  B )
2827oveq1d 5889 . 2  |-  ( ph  ->  ( sum_ k  e.  { M } A  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A )  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
2920, 28eqtrd 2328 1  |-  ( ph  -> 
sum_ k  e.  ( M ... N ) A  =  ( B  +  sum_ k  e.  ( ( M  +  1 ) ... N ) A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556    u. cun 3163    i^i cin 3164   (/)c0 3468   {csn 3653   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   CCcc 8751   1c1 8754    + caddc 8756    < clt 8883   ZZcz 10040   ZZ>=cuz 10246   ...cfz 10798   sum_csu 12174
This theorem is referenced by:  fsumtscopo  12276  fsumparts  12280  arisum2  12335  ovolicc2lem4  18895  advlogexp  20018  ftalem5  20330  rplogsumlem2  20650  axlowdimlem16  24657  bpolydiflem  24861
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175
  Copyright terms: Public domain W3C validator