MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsum2dlem Structured version   Unicode version

Theorem fsum2dlem 12546
Description: Lemma for fsum2d 12547- induction step. (Contributed by Mario Carneiro, 23-Apr-2014.)
Hypotheses
Ref Expression
fsum2d.1  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
fsum2d.2  |-  ( ph  ->  A  e.  Fin )
fsum2d.3  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
fsum2d.4  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
fsum2d.5  |-  ( ph  ->  -.  y  e.  x
)
fsum2d.6  |-  ( ph  ->  ( x  u.  {
y } )  C_  A )
fsum2d.7  |-  ( ps  <->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
Assertion
Ref Expression
fsum2dlem  |-  ( (
ph  /\  ps )  -> 
sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
Distinct variable groups:    j, k, x, y, z, A    B, k, x, y, z    D, j, k, x, y    x, C, y, z    ph, j,
k, z
Allowed substitution hints:    ph( x, y)    ps( x, y, z, j, k)    B( j)    C( j, k)    D( z)

Proof of Theorem fsum2dlem
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . 4  |-  ( (
ph  /\  ps )  ->  ps )
2 fsum2d.7 . . . 4  |-  ( ps  <->  sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
31, 2sylib 189 . . 3  |-  ( (
ph  /\  ps )  -> 
sum_ j  e.  x  sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D )
4 nfcv 2571 . . . . . 6  |-  F/_ m sum_ k  e.  B  C
5 nfcsb1v 3275 . . . . . . 7  |-  F/_ j [_ m  /  j ]_ B
6 nfcsb1v 3275 . . . . . . 7  |-  F/_ j [_ m  /  j ]_ C
75, 6nfsum 12477 . . . . . 6  |-  F/_ j sum_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C
8 csbeq1a 3251 . . . . . . 7  |-  ( j  =  m  ->  B  =  [_ m  /  j ]_ B )
9 csbeq1a 3251 . . . . . . . 8  |-  ( j  =  m  ->  C  =  [_ m  /  j ]_ C )
109adantr 452 . . . . . . 7  |-  ( ( j  =  m  /\  k  e.  B )  ->  C  =  [_ m  /  j ]_ C
)
118, 10sumeq12dv 12492 . . . . . 6  |-  ( j  =  m  ->  sum_ k  e.  B  C  =  sum_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C )
124, 7, 11cbvsumi 12483 . . . . 5  |-  sum_ j  e.  { y } sum_ k  e.  B  C  =  sum_ m  e.  {
y } sum_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C
13 fsum2d.6 . . . . . . . . 9  |-  ( ph  ->  ( x  u.  {
y } )  C_  A )
1413unssbd 3517 . . . . . . . 8  |-  ( ph  ->  { y }  C_  A )
15 vex 2951 . . . . . . . . 9  |-  y  e. 
_V
1615snss 3918 . . . . . . . 8  |-  ( y  e.  A  <->  { y }  C_  A )
1714, 16sylibr 204 . . . . . . 7  |-  ( ph  ->  y  e.  A )
18 fsum2d.3 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  B  e.  Fin )
1918ralrimiva 2781 . . . . . . . . 9  |-  ( ph  ->  A. j  e.  A  B  e.  Fin )
20 nfcsb1v 3275 . . . . . . . . . . 11  |-  F/_ j [_ y  /  j ]_ B
2120nfel1 2581 . . . . . . . . . 10  |-  F/ j
[_ y  /  j ]_ B  e.  Fin
22 csbeq1a 3251 . . . . . . . . . . 11  |-  ( j  =  y  ->  B  =  [_ y  /  j ]_ B )
2322eleq1d 2501 . . . . . . . . . 10  |-  ( j  =  y  ->  ( B  e.  Fin  <->  [_ y  / 
j ]_ B  e.  Fin ) )
2421, 23rspc 3038 . . . . . . . . 9  |-  ( y  e.  A  ->  ( A. j  e.  A  B  e.  Fin  ->  [_ y  /  j ]_ B  e.  Fin ) )
2517, 19, 24sylc 58 . . . . . . . 8  |-  ( ph  ->  [_ y  /  j ]_ B  e.  Fin )
26 fsum2d.4 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
2726ralrimivva 2790 . . . . . . . . . 10  |-  ( ph  ->  A. j  e.  A  A. k  e.  B  C  e.  CC )
28 nfcsb1v 3275 . . . . . . . . . . . . 13  |-  F/_ j [_ y  /  j ]_ C
2928nfel1 2581 . . . . . . . . . . . 12  |-  F/ j
[_ y  /  j ]_ C  e.  CC
3020, 29nfral 2751 . . . . . . . . . . 11  |-  F/ j A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC
31 csbeq1a 3251 . . . . . . . . . . . . 13  |-  ( j  =  y  ->  C  =  [_ y  /  j ]_ C )
3231eleq1d 2501 . . . . . . . . . . . 12  |-  ( j  =  y  ->  ( C  e.  CC  <->  [_ y  / 
j ]_ C  e.  CC ) )
3322, 32raleqbidv 2908 . . . . . . . . . . 11  |-  ( j  =  y  ->  ( A. k  e.  B  C  e.  CC  <->  A. k  e.  [_  y  /  j ]_ B [_ y  / 
j ]_ C  e.  CC ) )
3430, 33rspc 3038 . . . . . . . . . 10  |-  ( y  e.  A  ->  ( A. j  e.  A  A. k  e.  B  C  e.  CC  ->  A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC ) )
3517, 27, 34sylc 58 . . . . . . . . 9  |-  ( ph  ->  A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )
3635r19.21bi 2796 . . . . . . . 8  |-  ( (
ph  /\  k  e.  [_ y  /  j ]_ B )  ->  [_ y  /  j ]_ C  e.  CC )
3725, 36fsumcl 12519 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )
38 csbeq1 3246 . . . . . . . . 9  |-  ( m  =  y  ->  [_ m  /  j ]_ B  =  [_ y  /  j ]_ B )
39 csbeq1 3246 . . . . . . . . . 10  |-  ( m  =  y  ->  [_ m  /  j ]_ C  =  [_ y  /  j ]_ C )
4039adantr 452 . . . . . . . . 9  |-  ( ( m  =  y  /\  k  e.  [_ m  / 
j ]_ B )  ->  [_ m  /  j ]_ C  =  [_ y  /  j ]_ C
)
4138, 40sumeq12dv 12492 . . . . . . . 8  |-  ( m  =  y  ->  sum_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  sum_ k  e.  [_  y  / 
j ]_ B [_ y  /  j ]_ C
)
4241sumsn 12526 . . . . . . 7  |-  ( ( y  e.  A  /\  sum_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC )  ->  sum_ m  e.  {
y } sum_ k  e.  [_  m  /  j ]_ B [_ m  / 
j ]_ C  =  sum_ k  e.  [_  y  / 
j ]_ B [_ y  /  j ]_ C
)
4317, 37, 42syl2anc 643 . . . . . 6  |-  ( ph  -> 
sum_ m  e.  { y } sum_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C  =  sum_ k  e.  [_  y  / 
j ]_ B [_ y  /  j ]_ C
)
44 nfcv 2571 . . . . . . . 8  |-  F/_ m [_ y  /  j ]_ C
45 nfcsb1v 3275 . . . . . . . 8  |-  F/_ k [_ m  /  k ]_ [_ y  /  j ]_ C
46 csbeq1a 3251 . . . . . . . 8  |-  ( k  =  m  ->  [_ y  /  j ]_ C  =  [_ m  /  k ]_ [_ y  /  j ]_ C )
4744, 45, 46cbvsumi 12483 . . . . . . 7  |-  sum_ k  e.  [_  y  /  j ]_ B [_ y  / 
j ]_ C  =  sum_ m  e.  [_  y  / 
j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C
48 csbeq1 3246 . . . . . . . . 9  |-  ( m  =  ( 2nd `  z
)  ->  [_ m  / 
k ]_ [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
49 snfi 7179 . . . . . . . . . 10  |-  { y }  e.  Fin
50 xpfi 7370 . . . . . . . . . 10  |-  ( ( { y }  e.  Fin  /\  [_ y  / 
j ]_ B  e.  Fin )  ->  ( { y }  X.  [_ y  /  j ]_ B
)  e.  Fin )
5149, 25, 50sylancr 645 . . . . . . . . 9  |-  ( ph  ->  ( { y }  X.  [_ y  / 
j ]_ B )  e. 
Fin )
52 2ndconst 6428 . . . . . . . . . 10  |-  ( y  e.  A  ->  ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B
) ) : ( { y }  X.  [_ y  /  j ]_ B ) -1-1-onto-> [_ y  /  j ]_ B )
5317, 52syl 16 . . . . . . . . 9  |-  ( ph  ->  ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B ) ) : ( { y }  X.  [_ y  / 
j ]_ B ) -1-1-onto-> [_ y  /  j ]_ B
)
54 fvres 5737 . . . . . . . . . 10  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  ->  ( ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B
) ) `  z
)  =  ( 2nd `  z ) )
5554adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
( ( 2nd  |`  ( { y }  X.  [_ y  /  j ]_ B ) ) `  z )  =  ( 2nd `  z ) )
5645nfel1 2581 . . . . . . . . . . 11  |-  F/ k
[_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC
5746eleq1d 2501 . . . . . . . . . . 11  |-  ( k  =  m  ->  ( [_ y  /  j ]_ C  e.  CC  <->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC )
)
5856, 57rspc 3038 . . . . . . . . . 10  |-  ( m  e.  [_ y  / 
j ]_ B  ->  ( A. k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  e.  CC  ->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC ) )
5935, 58mpan9 456 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  [_ y  /  j ]_ B )  ->  [_ m  /  k ]_ [_ y  /  j ]_ C  e.  CC )
6048, 51, 53, 55, 59fsumf1o 12509 . . . . . . . 8  |-  ( ph  -> 
sum_ m  e.  [_  y  /  j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C  =  sum_ z  e.  ( {
y }  X.  [_ y  /  j ]_ B
) [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C )
61 elxp 4887 . . . . . . . . . . . 12  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  <->  E. m E. k
( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) ) )
62 nfv 1629 . . . . . . . . . . . . . . 15  |-  F/ j  z  =  <. m ,  k >.
63 nfv 1629 . . . . . . . . . . . . . . . 16  |-  F/ j  m  e.  { y }
6420nfcri 2565 . . . . . . . . . . . . . . . 16  |-  F/ j  k  e.  [_ y  /  j ]_ B
6563, 64nfan 1846 . . . . . . . . . . . . . . 15  |-  F/ j ( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )
6662, 65nfan 1846 . . . . . . . . . . . . . 14  |-  F/ j ( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )
6766nfex 1865 . . . . . . . . . . . . 13  |-  F/ j E. k ( z  =  <. m ,  k
>.  /\  ( m  e. 
{ y }  /\  k  e.  [_ y  / 
j ]_ B ) )
68 nfv 1629 . . . . . . . . . . . . 13  |-  F/ m E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )
69 opeq1 3976 . . . . . . . . . . . . . . . 16  |-  ( m  =  j  ->  <. m ,  k >.  =  <. j ,  k >. )
7069eqeq2d 2446 . . . . . . . . . . . . . . 15  |-  ( m  =  j  ->  (
z  =  <. m ,  k >.  <->  z  =  <. j ,  k >.
) )
71 eqtr2 2453 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  =  j  /\  m  =  y )  ->  j  =  y )
7271, 22syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  =  j  /\  m  =  y )  ->  B  =  [_ y  /  j ]_ B
)
7372eleq2d 2502 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  =  j  /\  m  =  y )  ->  ( k  e.  B  <->  k  e.  [_ y  / 
j ]_ B ) )
7473pm5.32da 623 . . . . . . . . . . . . . . . . 17  |-  ( m  =  j  ->  (
( m  =  y  /\  k  e.  B
)  <->  ( m  =  y  /\  k  e. 
[_ y  /  j ]_ B ) ) )
75 elsn 3821 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  { y }  <-> 
m  =  y )
7675anbi1i 677 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B )  <->  ( m  =  y  /\  k  e.  [_ y  /  j ]_ B ) )
7774, 76syl6rbbr 256 . . . . . . . . . . . . . . . 16  |-  ( m  =  j  ->  (
( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )  <->  ( m  =  y  /\  k  e.  B ) ) )
78 equequ1 1696 . . . . . . . . . . . . . . . . 17  |-  ( m  =  j  ->  (
m  =  y  <->  j  =  y ) )
7978anbi1d 686 . . . . . . . . . . . . . . . 16  |-  ( m  =  j  ->  (
( m  =  y  /\  k  e.  B
)  <->  ( j  =  y  /\  k  e.  B ) ) )
8077, 79bitrd 245 . . . . . . . . . . . . . . 15  |-  ( m  =  j  ->  (
( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B )  <->  ( j  =  y  /\  k  e.  B ) ) )
8170, 80anbi12d 692 . . . . . . . . . . . . . 14  |-  ( m  =  j  ->  (
( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )  <->  ( z  =  <. j ,  k
>.  /\  ( j  =  y  /\  k  e.  B ) ) ) )
8281exbidv 1636 . . . . . . . . . . . . 13  |-  ( m  =  j  ->  ( E. k ( z  = 
<. m ,  k >.  /\  ( m  e.  {
y }  /\  k  e.  [_ y  /  j ]_ B ) )  <->  E. k
( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
) ) )
8367, 68, 82cbvex 1983 . . . . . . . . . . . 12  |-  ( E. m E. k ( z  =  <. m ,  k >.  /\  (
m  e.  { y }  /\  k  e. 
[_ y  /  j ]_ B ) )  <->  E. j E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) ) )
8461, 83bitri 241 . . . . . . . . . . 11  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  <->  E. j E. k
( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
) )
85 nfv 1629 . . . . . . . . . . . 12  |-  F/ j
ph
86 nfcv 2571 . . . . . . . . . . . . . 14  |-  F/_ j
( 2nd `  z
)
8786, 28nfcsb 3277 . . . . . . . . . . . . 13  |-  F/_ j [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C
8887nfeq2 2582 . . . . . . . . . . . 12  |-  F/ j  D  =  [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C
89 nfv 1629 . . . . . . . . . . . . 13  |-  F/ k
ph
90 nfcsb1v 3275 . . . . . . . . . . . . . 14  |-  F/_ k [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C
9190nfeq2 2582 . . . . . . . . . . . . 13  |-  F/ k  D  =  [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C
92 fsum2d.1 . . . . . . . . . . . . . . . 16  |-  ( z  =  <. j ,  k
>.  ->  D  =  C )
9392ad2antlr 708 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  C )
9431ad2antrl 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  C  =  [_ y  /  j ]_ C )
95 fveq2 5720 . . . . . . . . . . . . . . . . . 18  |-  ( z  =  <. j ,  k
>.  ->  ( 2nd `  z
)  =  ( 2nd `  <. j ,  k
>. ) )
96 vex 2951 . . . . . . . . . . . . . . . . . . 19  |-  j  e. 
_V
97 vex 2951 . . . . . . . . . . . . . . . . . . 19  |-  k  e. 
_V
9896, 97op2nd 6348 . . . . . . . . . . . . . . . . . 18  |-  ( 2nd `  <. j ,  k
>. )  =  k
9995, 98syl6req 2484 . . . . . . . . . . . . . . . . 17  |-  ( z  =  <. j ,  k
>.  ->  k  =  ( 2nd `  z ) )
10099ad2antlr 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  k  =  ( 2nd `  z ) )
101 csbeq1a 3251 . . . . . . . . . . . . . . . 16  |-  ( k  =  ( 2nd `  z
)  ->  [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
102100, 101syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  [_ y  / 
j ]_ C  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C
)
10393, 94, 1023eqtrd 2471 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  z  =  <. j ,  k
>. )  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C )
104103expl 602 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10589, 91, 104exlimd 1824 . . . . . . . . . . . 12  |-  ( ph  ->  ( E. k ( z  =  <. j ,  k >.  /\  (
j  =  y  /\  k  e.  B )
)  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10685, 88, 105exlimd 1824 . . . . . . . . . . 11  |-  ( ph  ->  ( E. j E. k ( z  = 
<. j ,  k >.  /\  ( j  =  y  /\  k  e.  B
) )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
10784, 106syl5bi 209 . . . . . . . . . 10  |-  ( ph  ->  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B )  ->  D  =  [_ ( 2nd `  z
)  /  k ]_ [_ y  /  j ]_ C ) )
108107imp 419 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  ->  D  =  [_ ( 2nd `  z )  /  k ]_ [_ y  /  j ]_ C )
109108sumeq2dv 12489 . . . . . . . 8  |-  ( ph  -> 
sum_ z  e.  ( { y }  X.  [_ y  /  j ]_ B ) D  = 
sum_ z  e.  ( { y }  X.  [_ y  /  j ]_ B ) [_ ( 2nd `  z )  / 
k ]_ [_ y  / 
j ]_ C )
11060, 109eqtr4d 2470 . . . . . . 7  |-  ( ph  -> 
sum_ m  e.  [_  y  /  j ]_ B [_ m  /  k ]_ [_ y  /  j ]_ C  =  sum_ z  e.  ( {
y }  X.  [_ y  /  j ]_ B
) D )
11147, 110syl5eq 2479 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  [_  y  /  j ]_ B [_ y  /  j ]_ C  =  sum_ z  e.  ( {
y }  X.  [_ y  /  j ]_ B
) D )
11243, 111eqtrd 2467 . . . . 5  |-  ( ph  -> 
sum_ m  e.  { y } sum_ k  e.  [_  m  /  j ]_ B [_ m  /  j ]_ C  =  sum_ z  e.  ( {
y }  X.  [_ y  /  j ]_ B
) D )
11312, 112syl5eq 2479 . . . 4  |-  ( ph  -> 
sum_ j  e.  {
y } sum_ k  e.  B  C  =  sum_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
114113adantr 452 . . 3  |-  ( (
ph  /\  ps )  -> 
sum_ j  e.  {
y } sum_ k  e.  B  C  =  sum_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D )
1153, 114oveq12d 6091 . 2  |-  ( (
ph  /\  ps )  ->  ( sum_ j  e.  x  sum_ k  e.  B  C  +  sum_ j  e.  {
y } sum_ k  e.  B  C )  =  ( sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  +  sum_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
116 fsum2d.5 . . . . 5  |-  ( ph  ->  -.  y  e.  x
)
117 disjsn 3860 . . . . 5  |-  ( ( x  i^i  { y } )  =  (/)  <->  -.  y  e.  x )
118116, 117sylibr 204 . . . 4  |-  ( ph  ->  ( x  i^i  {
y } )  =  (/) )
119 eqidd 2436 . . . 4  |-  ( ph  ->  ( x  u.  {
y } )  =  ( x  u.  {
y } ) )
120 fsum2d.2 . . . . 5  |-  ( ph  ->  A  e.  Fin )
121 ssfi 7321 . . . . 5  |-  ( ( A  e.  Fin  /\  ( x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } )  e.  Fin )
122120, 13, 121syl2anc 643 . . . 4  |-  ( ph  ->  ( x  u.  {
y } )  e. 
Fin )
12313sselda 3340 . . . . 5  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
j  e.  A )
12426anassrs 630 . . . . . 6  |-  ( ( ( ph  /\  j  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
12518, 124fsumcl 12519 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  sum_ k  e.  B  C  e.  CC )
126123, 125syldan 457 . . . 4  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  ->  sum_ k  e.  B  C  e.  CC )
127118, 119, 122, 126fsumsplit 12525 . . 3  |-  ( ph  -> 
sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  ( sum_ j  e.  x  sum_ k  e.  B  C  +  sum_ j  e.  {
y } sum_ k  e.  B  C )
)
128127adantr 452 . 2  |-  ( (
ph  /\  ps )  -> 
sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  ( sum_ j  e.  x  sum_ k  e.  B  C  +  sum_ j  e.  {
y } sum_ k  e.  B  C )
)
129 eliun 4089 . . . . . . . . . 10  |-  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  <->  E. j  e.  x  z  e.  ( {
j }  X.  B
) )
130 xp1st 6368 . . . . . . . . . . . . . 14  |-  ( z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  { j } )
131 elsni 3830 . . . . . . . . . . . . . 14  |-  ( ( 1st `  z )  e.  { j }  ->  ( 1st `  z
)  =  j )
132130, 131syl 16 . . . . . . . . . . . . 13  |-  ( z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  =  j )
133132adantl 453 . . . . . . . . . . . 12  |-  ( ( j  e.  x  /\  z  e.  ( {
j }  X.  B
) )  ->  ( 1st `  z )  =  j )
134 simpl 444 . . . . . . . . . . . 12  |-  ( ( j  e.  x  /\  z  e.  ( {
j }  X.  B
) )  ->  j  e.  x )
135133, 134eqeltrd 2509 . . . . . . . . . . 11  |-  ( ( j  e.  x  /\  z  e.  ( {
j }  X.  B
) )  ->  ( 1st `  z )  e.  x )
136135rexlimiva 2817 . . . . . . . . . 10  |-  ( E. j  e.  x  z  e.  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  x )
137129, 136sylbi 188 . . . . . . . . 9  |-  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  ->  ( 1st `  z
)  e.  x )
138 xp1st 6368 . . . . . . . . 9  |-  ( z  e.  ( { y }  X.  [_ y  /  j ]_ B
)  ->  ( 1st `  z )  e.  {
y } )
139137, 138anim12i 550 . . . . . . . 8  |-  ( ( z  e.  U_ j  e.  x  ( {
j }  X.  B
)  /\  z  e.  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
( ( 1st `  z
)  e.  x  /\  ( 1st `  z )  e.  { y } ) )
140 elin 3522 . . . . . . . 8  |-  ( z  e.  ( U_ j  e.  x  ( {
j }  X.  B
)  i^i  ( {
y }  X.  [_ y  /  j ]_ B
) )  <->  ( z  e.  U_ j  e.  x  ( { j }  X.  B )  /\  z  e.  ( { y }  X.  [_ y  / 
j ]_ B ) ) )
141 elin 3522 . . . . . . . 8  |-  ( ( 1st `  z )  e.  ( x  i^i 
{ y } )  <-> 
( ( 1st `  z
)  e.  x  /\  ( 1st `  z )  e.  { y } ) )
142139, 140, 1413imtr4i 258 . . . . . . 7  |-  ( z  e.  ( U_ j  e.  x  ( {
j }  X.  B
)  i^i  ( {
y }  X.  [_ y  /  j ]_ B
) )  ->  ( 1st `  z )  e.  ( x  i^i  {
y } ) )
143118eleq2d 2502 . . . . . . . 8  |-  ( ph  ->  ( ( 1st `  z
)  e.  ( x  i^i  { y } )  <->  ( 1st `  z
)  e.  (/) ) )
144 noel 3624 . . . . . . . . 9  |-  -.  ( 1st `  z )  e.  (/)
145144pm2.21i 125 . . . . . . . 8  |-  ( ( 1st `  z )  e.  (/)  ->  z  e.  (/) )
146143, 145syl6bi 220 . . . . . . 7  |-  ( ph  ->  ( ( 1st `  z
)  e.  ( x  i^i  { y } )  ->  z  e.  (/) ) )
147142, 146syl5 30 . . . . . 6  |-  ( ph  ->  ( z  e.  (
U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B ) )  -> 
z  e.  (/) ) )
148147ssrdv 3346 . . . . 5  |-  ( ph  ->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  C_  (/) )
149 ss0 3650 . . . . 5  |-  ( (
U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B ) )  C_  (/) 
->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  =  (/) )
150148, 149syl 16 . . . 4  |-  ( ph  ->  ( U_ j  e.  x  ( { j }  X.  B )  i^i  ( { y }  X.  [_ y  /  j ]_ B
) )  =  (/) )
151 iunxun 4164 . . . . . 6  |-  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  =  (
U_ j  e.  x  ( { j }  X.  B )  u.  U_ j  e.  { y }  ( { j }  X.  B ) )
152 nfcv 2571 . . . . . . . . 9  |-  F/_ m
( { j }  X.  B )
153 nfcv 2571 . . . . . . . . . 10  |-  F/_ j { m }
154153, 5nfxp 4896 . . . . . . . . 9  |-  F/_ j
( { m }  X.  [_ m  /  j ]_ B )
155 sneq 3817 . . . . . . . . . 10  |-  ( j  =  m  ->  { j }  =  { m } )
156155, 8xpeq12d 4895 . . . . . . . . 9  |-  ( j  =  m  ->  ( { j }  X.  B )  =  ( { m }  X.  [_ m  /  j ]_ B ) )
157152, 154, 156cbviun 4120 . . . . . . . 8  |-  U_ j  e.  { y }  ( { j }  X.  B )  =  U_ m  e.  { y }  ( { m }  X.  [_ m  / 
j ]_ B )
158 sneq 3817 . . . . . . . . . 10  |-  ( m  =  y  ->  { m }  =  { y } )
159158, 38xpeq12d 4895 . . . . . . . . 9  |-  ( m  =  y  ->  ( { m }  X.  [_ m  /  j ]_ B )  =  ( { y }  X.  [_ y  /  j ]_ B ) )
16015, 159iunxsn 4162 . . . . . . . 8  |-  U_ m  e.  { y }  ( { m }  X.  [_ m  /  j ]_ B )  =  ( { y }  X.  [_ y  /  j ]_ B )
161157, 160eqtri 2455 . . . . . . 7  |-  U_ j  e.  { y }  ( { j }  X.  B )  =  ( { y }  X.  [_ y  /  j ]_ B )
162161uneq2i 3490 . . . . . 6  |-  ( U_ j  e.  x  ( { j }  X.  B )  u.  U_ j  e.  { y }  ( { j }  X.  B ) )  =  ( U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) )
163151, 162eqtri 2455 . . . . 5  |-  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  =  (
U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) )
164163a1i 11 . . . 4  |-  ( ph  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  =  ( U_ j  e.  x  ( { j }  X.  B )  u.  ( { y }  X.  [_ y  /  j ]_ B ) ) )
165 snfi 7179 . . . . . . 7  |-  { j }  e.  Fin
166123, 18syldan 457 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  ->  B  e.  Fin )
167 xpfi 7370 . . . . . . 7  |-  ( ( { j }  e.  Fin  /\  B  e.  Fin )  ->  ( { j }  X.  B )  e.  Fin )
168165, 166, 167sylancr 645 . . . . . 6  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( { j }  X.  B )  e. 
Fin )
169168ralrimiva 2781 . . . . 5  |-  ( ph  ->  A. j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
170 iunfi 7386 . . . . 5  |-  ( ( ( x  u.  {
y } )  e. 
Fin  /\  A. j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  e.  Fin )  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
171122, 169, 170syl2anc 643 . . . 4  |-  ( ph  ->  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B
)  e.  Fin )
172 eliun 4089 . . . . . 6  |-  ( z  e.  U_ j  e.  ( x  u.  {
y } ) ( { j }  X.  B )  <->  E. j  e.  ( x  u.  {
y } ) z  e.  ( { j }  X.  B ) )
173 elxp 4887 . . . . . . . 8  |-  ( z  e.  ( { j }  X.  B )  <->  E. m E. k ( z  =  <. m ,  k >.  /\  (
m  e.  { j }  /\  k  e.  B ) ) )
174 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  z  =  <. m ,  k >. )
175 simprrl 741 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  m  e.  {
j } )
176 elsni 3830 . . . . . . . . . . . . . . 15  |-  ( m  e.  { j }  ->  m  =  j )
177175, 176syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  m  =  j )
178177opeq1d 3982 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  <. m ,  k
>.  =  <. j ,  k >. )
179174, 178eqtrd 2467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  z  =  <. j ,  k >. )
180179, 92syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  D  =  C )
181 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  ph )
182123adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  j  e.  A
)
183 simprrr 742 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  k  e.  B
)
184181, 182, 183, 26syl12anc 1182 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  C  e.  CC )
185180, 184eqeltrd 2509 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  ( x  u.  {
y } ) )  /\  ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) ) )  ->  D  e.  CC )
186185ex 424 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) )  ->  D  e.  CC )
)
187186exlimdvv 1647 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( E. m E. k ( z  = 
<. m ,  k >.  /\  ( m  e.  {
j }  /\  k  e.  B ) )  ->  D  e.  CC )
)
188173, 187syl5bi 209 . . . . . . 7  |-  ( (
ph  /\  j  e.  ( x  u.  { y } ) )  -> 
( z  e.  ( { j }  X.  B )  ->  D  e.  CC ) )
189188rexlimdva 2822 . . . . . 6  |-  ( ph  ->  ( E. j  e.  ( x  u.  {
y } ) z  e.  ( { j }  X.  B )  ->  D  e.  CC ) )
190172, 189syl5bi 209 . . . . 5  |-  ( ph  ->  ( z  e.  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B )  ->  D  e.  CC )
)
191190imp 419 . . . 4  |-  ( (
ph  /\  z  e.  U_ j  e.  ( x  u.  { y } ) ( { j }  X.  B ) )  ->  D  e.  CC )
192150, 164, 171, 191fsumsplit 12525 . . 3  |-  ( ph  -> 
sum_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D  =  ( sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  +  sum_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
193192adantr 452 . 2  |-  ( (
ph  /\  ps )  -> 
sum_ z  e.  U_  j  e.  ( x  u.  { y } ) ( { j }  X.  B ) D  =  ( sum_ z  e.  U_  j  e.  x  ( { j }  X.  B ) D  +  sum_ z  e.  ( { y }  X.  [_ y  /  j ]_ B
) D ) )
194115, 128, 1933eqtr4d 2477 1  |-  ( (
ph  /\  ps )  -> 
sum_ j  e.  ( x  u.  { y } ) sum_ k  e.  B  C  =  sum_ z  e.  U_  j  e.  ( x  u.  {
y } ) ( { j }  X.  B ) D )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698   [_csb 3243    u. cun 3310    i^i cin 3311    C_ wss 3312   (/)c0 3620   {csn 3806   <.cop 3809   U_ciun 4085    X. cxp 4868    |` cres 4872   -1-1-onto->wf1o 5445   ` cfv 5446  (class class class)co 6073   1stc1st 6339   2ndc2nd 6340   Fincfn 7101   CCcc 8980    + caddc 8985   sum_csu 12471
This theorem is referenced by:  fsum2d  12547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7471  df-card 7818  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-n0 10214  df-z 10275  df-uz 10481  df-rp 10605  df-fz 11036  df-fzo 11128  df-seq 11316  df-exp 11375  df-hash 11611  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-clim 12274  df-sum 12472
  Copyright terms: Public domain W3C validator