MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumabs Unicode version

Theorem fsumabs 12508
Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
fsumabs.1  |-  ( ph  ->  A  e.  Fin )
fsumabs.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
Assertion
Ref Expression
fsumabs  |-  ( ph  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsumabs
Dummy variables  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3311 . 2  |-  A  C_  A
2 fsumabs.1 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3313 . . . . . 6  |-  ( w  =  (/)  ->  ( w 
C_  A  <->  (/)  C_  A
) )
4 sumeq1 12411 . . . . . . . 8  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
54fveq2d 5673 . . . . . . 7  |-  ( w  =  (/)  ->  ( abs `  sum_ k  e.  w  B )  =  ( abs `  sum_ k  e.  (/)  B ) )
6 sumeq1 12411 . . . . . . 7  |-  ( w  =  (/)  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  (/)  ( abs `  B ) )
75, 6breq12d 4167 . . . . . 6  |-  ( w  =  (/)  ->  ( ( abs `  sum_ k  e.  w  B )  <_ 
sum_ k  e.  w  ( abs `  B )  <-> 
( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) )
83, 7imbi12d 312 . . . . 5  |-  ( w  =  (/)  ->  ( ( w  C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_ 
sum_ k  e.  w  ( abs `  B ) )  <->  ( (/)  C_  A  ->  ( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) ) )
98imbi2d 308 . . . 4  |-  ( w  =  (/)  ->  ( (
ph  ->  ( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) ) )  <->  ( ph  ->  ( (/)  C_  A  -> 
( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) ) ) )
10 sseq1 3313 . . . . . 6  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
11 sumeq1 12411 . . . . . . . 8  |-  ( w  =  x  ->  sum_ k  e.  w  B  =  sum_ k  e.  x  B )
1211fveq2d 5673 . . . . . . 7  |-  ( w  =  x  ->  ( abs `  sum_ k  e.  w  B )  =  ( abs `  sum_ k  e.  x  B )
)
13 sumeq1 12411 . . . . . . 7  |-  ( w  =  x  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  x  ( abs `  B ) )
1412, 13breq12d 4167 . . . . . 6  |-  ( w  =  x  ->  (
( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
)  <->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) ) )
1510, 14imbi12d 312 . . . . 5  |-  ( w  =  x  ->  (
( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) )  <->  ( x  C_  A  ->  ( abs ` 
sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B ) ) ) )
1615imbi2d 308 . . . 4  |-  ( w  =  x  ->  (
( ph  ->  ( w 
C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B ) ) )  <-> 
( ph  ->  ( x 
C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B ) ) ) ) )
17 sseq1 3313 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( w  C_  A 
<->  ( x  u.  {
y } )  C_  A ) )
18 sumeq1 12411 . . . . . . . 8  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( x  u.  {
y } ) B )
1918fveq2d 5673 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  ( abs `  sum_ k  e.  w  B
)  =  ( abs `  sum_ k  e.  ( x  u.  { y } ) B ) )
20 sumeq1 12411 . . . . . . 7  |-  ( w  =  ( x  u. 
{ y } )  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) )
2119, 20breq12d 4167 . . . . . 6  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B )  <->  ( abs ` 
sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
2217, 21imbi12d 312 . . . . 5  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( w 
C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B ) )  <->  ( (
x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) )
2322imbi2d 308 . . . 4  |-  ( w  =  ( x  u. 
{ y } )  ->  ( ( ph  ->  ( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) ) )  <->  ( ph  ->  ( ( x  u. 
{ y } ) 
C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) ) ) )
24 sseq1 3313 . . . . . 6  |-  ( w  =  A  ->  (
w  C_  A  <->  A  C_  A
) )
25 sumeq1 12411 . . . . . . . 8  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
2625fveq2d 5673 . . . . . . 7  |-  ( w  =  A  ->  ( abs `  sum_ k  e.  w  B )  =  ( abs `  sum_ k  e.  A  B )
)
27 sumeq1 12411 . . . . . . 7  |-  ( w  =  A  ->  sum_ k  e.  w  ( abs `  B )  =  sum_ k  e.  A  ( abs `  B ) )
2826, 27breq12d 4167 . . . . . 6  |-  ( w  =  A  ->  (
( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
)  <->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) ) )
2924, 28imbi12d 312 . . . . 5  |-  ( w  =  A  ->  (
( w  C_  A  ->  ( abs `  sum_ k  e.  w  B
)  <_  sum_ k  e.  w  ( abs `  B
) )  <->  ( A  C_  A  ->  ( abs ` 
sum_ k  e.  A  B )  <_  sum_ k  e.  A  ( abs `  B ) ) ) )
3029imbi2d 308 . . . 4  |-  ( w  =  A  ->  (
( ph  ->  ( w 
C_  A  ->  ( abs `  sum_ k  e.  w  B )  <_  sum_ k  e.  w  ( abs `  B ) ) )  <-> 
( ph  ->  ( A 
C_  A  ->  ( abs `  sum_ k  e.  A  B )  <_  sum_ k  e.  A  ( abs `  B ) ) ) ) )
31 0le0 10014 . . . . . 6  |-  0  <_  0
32 sum0 12443 . . . . . . . 8  |-  sum_ k  e.  (/)  B  =  0
3332fveq2i 5672 . . . . . . 7  |-  ( abs `  sum_ k  e.  (/)  B )  =  ( abs `  0 )
34 abs0 12018 . . . . . . 7  |-  ( abs `  0 )  =  0
3533, 34eqtri 2408 . . . . . 6  |-  ( abs `  sum_ k  e.  (/)  B )  =  0
36 sum0 12443 . . . . . 6  |-  sum_ k  e.  (/)  ( abs `  B
)  =  0
3731, 35, 363brtr4i 4182 . . . . 5  |-  ( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B
)
3837a1ii 25 . . . 4  |-  ( ph  ->  ( (/)  C_  A  -> 
( abs `  sum_ k  e.  (/)  B )  <_  sum_ k  e.  (/)  ( abs `  B ) ) )
39 ssun1 3454 . . . . . . . . . 10  |-  x  C_  ( x  u.  { y } )
40 sstr 3300 . . . . . . . . . 10  |-  ( ( x  C_  ( x  u.  { y } )  /\  ( x  u. 
{ y } ) 
C_  A )  ->  x  C_  A )
4139, 40mpan 652 . . . . . . . . 9  |-  ( ( x  u.  { y } )  C_  A  ->  x  C_  A )
4241imim1i 56 . . . . . . . 8  |-  ( ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_ 
sum_ k  e.  x  ( abs `  B ) )  ->  ( (
x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) ) )
43 simpll 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ph )
4443, 2syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  A  e.  Fin )
45 simpr 448 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  C_  A
)
4645unssad 3468 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  x  C_  A )
47 ssfi 7266 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  Fin  /\  x  C_  A )  ->  x  e.  Fin )
4844, 46, 47syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  x  e.  Fin )
4946sselda 3292 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  x )  ->  k  e.  A )
50 fsumabs.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
5143, 50sylan 458 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  A )  ->  B  e.  CC )
5249, 51syldan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  x )  ->  B  e.  CC )
5348, 52fsumcl 12455 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  x  B  e.  CC )
5453abscld 12166 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  x  B )  e.  RR )
5552abscld 12166 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  x )  ->  ( abs `  B
)  e.  RR )
5648, 55fsumrecl 12456 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  x  ( abs `  B )  e.  RR )
5745unssbd 3469 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  { y }  C_  A )
58 vex 2903 . . . . . . . . . . . . . . . . 17  |-  y  e. 
_V
5958snss 3870 . . . . . . . . . . . . . . . 16  |-  ( y  e.  A  <->  { y }  C_  A )
6057, 59sylibr 204 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  y  e.  A )
6150ralrimiva 2733 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
6243, 61syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  A. k  e.  A  B  e.  CC )
63 nfcsb1v 3227 . . . . . . . . . . . . . . . . 17  |-  F/_ k [_ y  /  k ]_ B
6463nfel1 2534 . . . . . . . . . . . . . . . 16  |-  F/ k
[_ y  /  k ]_ B  e.  CC
65 csbeq1a 3203 . . . . . . . . . . . . . . . . 17  |-  ( k  =  y  ->  B  =  [_ y  /  k ]_ B )
6665eleq1d 2454 . . . . . . . . . . . . . . . 16  |-  ( k  =  y  ->  ( B  e.  CC  <->  [_ y  / 
k ]_ B  e.  CC ) )
6764, 66rspc 2990 . . . . . . . . . . . . . . 15  |-  ( y  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ y  /  k ]_ B  e.  CC )
)
6860, 62, 67sylc 58 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  [_ y  /  k ]_ B  e.  CC )
6968abscld 12166 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  [_ y  / 
k ]_ B )  e.  RR )
7054, 56, 69leadd1d 9553 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
)  <->  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  <_  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) ) )
71 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  -.  y  e.  x )
72 disjsn 3812 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  { y } )  =  (/)  <->  -.  y  e.  x )
7371, 72sylibr 204 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  i^i  { y } )  =  (/) )
74 eqidd 2389 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  =  ( x  u.  { y } ) )
75 ssfi 7266 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  Fin  /\  ( x  u.  { y } )  C_  A
)  ->  ( x  u.  { y } )  e.  Fin )
7644, 45, 75syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
x  u.  { y } )  e.  Fin )
7745sselda 3292 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  k  e.  A )
7877, 51syldan 457 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  B  e.  CC )
7978abscld 12166 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  ( abs `  B )  e.  RR )
8079recnd 9048 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  y  e.  x
)  /\  ( x  u.  { y } ) 
C_  A )  /\  k  e.  ( x  u.  { y } ) )  ->  ( abs `  B )  e.  CC )
8173, 74, 76, 80fsumsplit 12461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  =  ( sum_ k  e.  x  ( abs `  B )  +  sum_ k  e.  { y }  ( abs `  B
) ) )
82 csbfv2g 5681 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  _V  ->  [_ y  /  k ]_ ( abs `  B )  =  ( abs `  [_ y  /  k ]_ B
) )
8358, 82ax-mp 8 . . . . . . . . . . . . . . . . . 18  |-  [_ y  /  k ]_ ( abs `  B )  =  ( abs `  [_ y  /  k ]_ B
)
8469recnd 9048 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  [_ y  / 
k ]_ B )  e.  CC )
8583, 84syl5eqel 2472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  [_ y  /  k ]_ ( abs `  B )  e.  CC )
86 sumsns 12464 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  _V  /\  [_ y  /  k ]_ ( abs `  B )  e.  CC )  ->  sum_ k  e.  { y }  ( abs `  B
)  =  [_ y  /  k ]_ ( abs `  B ) )
8758, 85, 86sylancr 645 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  { y }  ( abs `  B )  = 
[_ y  /  k ]_ ( abs `  B
) )
8887, 83syl6eq 2436 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  { y }  ( abs `  B )  =  ( abs `  [_ y  /  k ]_ B
) )
8988oveq2d 6037 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( sum_ k  e.  x  ( abs `  B )  +  sum_ k  e.  {
y }  ( abs `  B ) )  =  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) )
9081, 89eqtrd 2420 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  =  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) )
9190breq2d 4166 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
)  <->  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  <_  ( sum_ k  e.  x  ( abs `  B )  +  ( abs `  [_ y  /  k ]_ B
) ) ) )
9270, 91bitr4d 248 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
)  <->  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) )
9373, 74, 76, 78fsumsplit 12461 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) B  =  ( sum_ k  e.  x  B  +  sum_ k  e.  { y } B ) )
94 sumsns 12464 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  A  /\  [_ y  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  {
y } B  = 
[_ y  /  k ]_ B )
9560, 68, 94syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  { y } B  =  [_ y  /  k ]_ B )
9695oveq2d 6037 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( sum_ k  e.  x  B  +  sum_ k  e.  {
y } B )  =  ( sum_ k  e.  x  B  +  [_ y  /  k ]_ B ) )
9793, 96eqtrd 2420 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) B  =  ( sum_ k  e.  x  B  +  [_ y  /  k ]_ B ) )
9897fveq2d 5673 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  =  ( abs `  ( sum_ k  e.  x  B  +  [_ y  / 
k ]_ B ) ) )
9953, 68abstrid 12186 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  ( sum_ k  e.  x  B  +  [_ y  /  k ]_ B ) )  <_ 
( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) ) )
10098, 99eqbrtrd 4174 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) ) )
10176, 78fsumcl 12455 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) B  e.  CC )
102101abscld 12166 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  e.  RR )
10354, 69readdcld 9049 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  e.  RR )
10476, 79fsumrecl 12456 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  e.  RR )
105 letr 9101 . . . . . . . . . . . . 13  |-  ( ( ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  e.  RR  /\  ( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  e.  RR  /\  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B )  e.  RR )  -> 
( ( ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  ( ( abs `  sum_ k  e.  x  B )  +  ( abs `  [_ y  /  k ]_ B
) )  /\  (
( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
) )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
106102, 103, 104, 105syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  (
( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  /\  ( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
) )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
107100, 106mpand 657 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( ( abs `  sum_ k  e.  x  B
)  +  ( abs `  [_ y  /  k ]_ B ) )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B
)  ->  ( abs ` 
sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
10892, 107sylbid 207 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  y  e.  x )  /\  ( x  u.  {
y } )  C_  A )  ->  (
( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
)  ->  ( abs ` 
sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) )
109108ex 424 . . . . . . . . 9  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  u.  {
y } )  C_  A  ->  ( ( abs `  sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B )  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) ) )
110109a2d 24 . . . . . . . 8  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( ( x  u. 
{ y } ) 
C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_  sum_ k  e.  x  ( abs `  B ) )  -> 
( ( x  u. 
{ y } ) 
C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  { y } ) ( abs `  B ) ) ) )
11142, 110syl5 30 . . . . . . 7  |-  ( (
ph  /\  -.  y  e.  x )  ->  (
( x  C_  A  ->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) )  ->  (
( x  u.  {
y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) )
112111expcom 425 . . . . . 6  |-  ( -.  y  e.  x  -> 
( ph  ->  ( ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_ 
sum_ k  e.  x  ( abs `  B ) )  ->  ( (
x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) ) )
113112a2d 24 . . . . 5  |-  ( -.  y  e.  x  -> 
( ( ph  ->  ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B )  <_ 
sum_ k  e.  x  ( abs `  B ) ) )  ->  ( ph  ->  ( ( x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  {
y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) ) )
114113adantl 453 . . . 4  |-  ( ( x  e.  Fin  /\  -.  y  e.  x
)  ->  ( ( ph  ->  ( x  C_  A  ->  ( abs `  sum_ k  e.  x  B
)  <_  sum_ k  e.  x  ( abs `  B
) ) )  -> 
( ph  ->  ( ( x  u.  { y } )  C_  A  ->  ( abs `  sum_ k  e.  ( x  u.  { y } ) B )  <_  sum_ k  e.  ( x  u.  {
y } ) ( abs `  B ) ) ) ) )
1159, 16, 23, 30, 38, 114findcard2s 7286 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) ) ) )
1162, 115mpcom 34 . 2  |-  ( ph  ->  ( A  C_  A  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) ) )
1171, 116mpi 17 1  |-  ( ph  ->  ( abs `  sum_ k  e.  A  B
)  <_  sum_ k  e.  A  ( abs `  B
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   A.wral 2650   _Vcvv 2900   [_csb 3195    u. cun 3262    i^i cin 3263    C_ wss 3264   (/)c0 3572   {csn 3758   class class class wbr 4154   ` cfv 5395  (class class class)co 6021   Fincfn 7046   CCcc 8922   RRcr 8923   0cc0 8924    + caddc 8927    <_ cle 9055   abscabs 11967   sum_csu 12407
This theorem is referenced by:  o1fsum  12520  seqabs  12521  cvgcmpce  12525  mertenslem1  12589  dvfsumabs  19775  mtest  20188  mtestbdd  20189  abelthlem7  20222  fsumharmonic  20718  ftalem1  20723  ftalem5  20727  dchrisumlem2  21052  dchrmusum2  21056  dchrvmasumlem3  21061  dchrvmasumiflem1  21063  dchrisum0lem1  21078  dchrisum0lem2a  21079  mudivsum  21092  mulogsumlem  21093  2vmadivsumlem  21102  selberglem2  21108  selberg3lem1  21119  selberg4lem1  21122  pntrsumbnd  21128  pntrlog2bndlem1  21139  pntrlog2bndlem3  21141
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-oi 7413  df-card 7760  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-fz 10977  df-fzo 11067  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-sum 12408
  Copyright terms: Public domain W3C validator