MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumadd Structured version   Unicode version

Theorem fsumadd 12563
Description: The sum of two finite sums. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
Hypotheses
Ref Expression
fsumadd.1  |-  ( ph  ->  A  e.  Fin )
fsumadd.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumadd.3  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
Assertion
Ref Expression
fsumadd  |-  ( ph  -> 
sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
Distinct variable groups:    A, k    ph, k
Allowed substitution hints:    B( k)    C( k)

Proof of Theorem fsumadd
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 00id 9272 . . . . 5  |-  ( 0  +  0 )  =  0
2 sum0 12546 . . . . . 6  |-  sum_ k  e.  (/)  B  =  0
3 sum0 12546 . . . . . 6  |-  sum_ k  e.  (/)  C  =  0
42, 3oveq12i 6122 . . . . 5  |-  ( sum_ k  e.  (/)  B  +  sum_ k  e.  (/)  C )  =  ( 0  +  0 )
5 sum0 12546 . . . . 5  |-  sum_ k  e.  (/)  ( B  +  C )  =  0
61, 4, 53eqtr4ri 2473 . . . 4  |-  sum_ k  e.  (/)  ( B  +  C )  =  (
sum_ k  e.  (/)  B  +  sum_ k  e.  (/)  C )
7 sumeq1 12514 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( B  +  C )  =  sum_ k  e.  (/)  ( B  +  C ) )
8 sumeq1 12514 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
9 sumeq1 12514 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  C  =  sum_ k  e.  (/)  C )
108, 9oveq12d 6128 . . . 4  |-  ( A  =  (/)  ->  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C )  =  (
sum_ k  e.  (/)  B  +  sum_ k  e.  (/)  C ) )
116, 7, 103eqtr4a 2500 . . 3  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
1211a1i 11 . 2  |-  ( ph  ->  ( A  =  (/)  -> 
sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
13 simprl 734 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
14 nnuz 10552 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1513, 14syl6eleq 2532 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
16 fsumadd.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
1716adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  B  e.  CC )
18 eqid 2442 . . . . . . . . . . 11  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
1917, 18fmptd 5922 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
20 simprr 735 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
21 f1of 5703 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
2220, 21syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
23 fco 5629 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
2419, 22, 23syl2anc 644 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
2524ffvelrnda 5899 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  e.  CC )
26 fsumadd.3 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  C  e.  CC )
2726adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  C  e.  CC )
28 eqid 2442 . . . . . . . . . . 11  |-  ( k  e.  A  |->  C )  =  ( k  e.  A  |->  C )
2927, 28fmptd 5922 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  C ) : A --> CC )
30 fco 5629 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  C ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  C )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
3129, 22, 30syl2anc 644 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  C )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
3231ffvelrnda 5899 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  e.  CC )
3322ffvelrnda 5899 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( f `  n
)  e.  A )
34 ovex 6135 . . . . . . . . . . . . . . 15  |-  ( B  +  C )  e. 
_V
35 eqid 2442 . . . . . . . . . . . . . . . 16  |-  ( k  e.  A  |->  ( B  +  C ) )  =  ( k  e.  A  |->  ( B  +  C ) )
3635fvmpt2 5841 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  ( B  +  C
)  e.  _V )  ->  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( B  +  C ) )
3734, 36mpan2 654 . . . . . . . . . . . . . 14  |-  ( k  e.  A  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( B  +  C ) )
3837adantl 454 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( B  +  C ) )
39 simpr 449 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
4018fvmpt2 5841 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  k )  =  B )
4139, 16, 40syl2anc 644 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  B ) `  k
)  =  B )
4228fvmpt2 5841 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  C  e.  CC )  ->  ( ( k  e.  A  |->  C ) `  k )  =  C )
4339, 26, 42syl2anc 644 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  C ) `  k
)  =  C )
4441, 43oveq12d 6128 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  =  ( B  +  C ) )
4538, 44eqtr4d 2477 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( ( ( k  e.  A  |->  B ) `  k
)  +  ( ( k  e.  A  |->  C ) `  k ) ) )
4645ralrimiva 2795 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) ) )
4746ad2antrr 708 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  ->  A. k  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) ) )
48 nffvmpt1 5765 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `  n
) )
49 nffvmpt1 5765 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  B ) `  ( f `  n
) )
50 nfcv 2578 . . . . . . . . . . . . 13  |-  F/_ k  +
51 nffvmpt1 5765 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  C ) `  ( f `  n
) )
5249, 50, 51nfov 6133 . . . . . . . . . . . 12  |-  F/_ k
( ( ( k  e.  A  |->  B ) `
 ( f `  n ) )  +  ( ( k  e.  A  |->  C ) `  ( f `  n
) ) )
5348, 52nfeq 2585 . . . . . . . . . . 11  |-  F/ k ( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `  n
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  +  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
54 fveq2 5757 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  k
)  =  ( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `
 n ) ) )
55 fveq2 5757 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  k
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
56 fveq2 5757 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  k
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
5755, 56oveq12d 6128 . . . . . . . . . . . 12  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  +  ( ( k  e.  A  |->  C ) `  (
f `  n )
) ) )
5854, 57eqeq12d 2456 . . . . . . . . . . 11  |-  ( k  =  ( f `  n )  ->  (
( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  <->  ( (
k  e.  A  |->  ( B  +  C ) ) `  ( f `
 n ) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `
 n ) )  +  ( ( k  e.  A  |->  C ) `
 ( f `  n ) ) ) ) )
5953, 58rspc 3052 . . . . . . . . . 10  |-  ( ( f `  n )  e.  A  ->  ( A. k  e.  A  ( ( k  e.  A  |->  ( B  +  C ) ) `  k )  =  ( ( ( k  e.  A  |->  B ) `  k )  +  ( ( k  e.  A  |->  C ) `  k
) )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  (
f `  n )
)  =  ( ( ( k  e.  A  |->  B ) `  (
f `  n )
)  +  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) ) ) )
6033, 47, 59sylc 59 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `  n
) )  =  ( ( ( k  e.  A  |->  B ) `  ( f `  n
) )  +  ( ( k  e.  A  |->  C ) `  (
f `  n )
) ) )
61 fvco3 5829 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( B  +  C
) ) `  (
f `  n )
) )
6222, 61sylan 459 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n )  =  ( ( k  e.  A  |->  ( B  +  C
) ) `  (
f `  n )
) )
63 fvco3 5829 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
6422, 63sylan 459 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  n )  =  ( ( k  e.  A  |->  B ) `  (
f `  n )
) )
65 fvco3 5829 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
6622, 65sylan 459 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  C )  o.  f ) `  n )  =  ( ( k  e.  A  |->  C ) `  (
f `  n )
) )
6764, 66oveq12d 6128 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( ( k  e.  A  |->  B )  o.  f ) `
 n )  +  ( ( ( k  e.  A  |->  C )  o.  f ) `  n ) )  =  ( ( ( k  e.  A  |->  B ) `
 ( f `  n ) )  +  ( ( k  e.  A  |->  C ) `  ( f `  n
) ) ) )
6860, 62, 673eqtr4d 2484 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  n  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) `  n )  =  ( ( ( ( k  e.  A  |->  B )  o.  f ) `  n )  +  ( ( ( k  e.  A  |->  C )  o.  f ) `  n
) ) )
6915, 25, 32, 68seradd 11396 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (  seq  1 (  +  , 
( ( k  e.  A  |->  ( B  +  C ) )  o.  f ) ) `  ( # `  A ) )  =  ( (  seq  1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) )  +  (  seq  1 (  +  ,  ( ( k  e.  A  |->  C )  o.  f ) ) `
 ( # `  A
) ) ) )
70 fveq2 5757 . . . . . . . 8  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  ( B  +  C
) ) `  m
)  =  ( ( k  e.  A  |->  ( B  +  C ) ) `  ( f `
 n ) ) )
7117, 27addcld 9138 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  k  e.  A )  ->  ( B  +  C
)  e.  CC )
7271, 35fmptd 5922 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  ( B  +  C ) ) : A --> CC )
7372ffvelrnda 5899 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  ( B  +  C ) ) `  m )  e.  CC )
7470, 13, 20, 73, 62fsum 12545 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  ( B  +  C ) ) `  m )  =  (  seq  1
(  +  ,  ( ( k  e.  A  |->  ( B  +  C
) )  o.  f
) ) `  ( # `
 A ) ) )
75 fveq2 5757 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 n ) ) )
7619ffvelrnda 5899 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
7775, 13, 20, 76, 64fsum 12545 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  (  seq  1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
78 fveq2 5757 . . . . . . . . 9  |-  ( m  =  ( f `  n )  ->  (
( k  e.  A  |->  C ) `  m
)  =  ( ( k  e.  A  |->  C ) `  ( f `
 n ) ) )
7929ffvelrnda 5899 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  C ) `  m )  e.  CC )
8078, 13, 20, 79, 66fsum 12545 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  (  seq  1
(  +  ,  ( ( k  e.  A  |->  C )  o.  f
) ) `  ( # `
 A ) ) )
8177, 80oveq12d 6128 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m
)  +  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m ) )  =  ( (  seq  1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) )  +  (  seq  1 (  +  ,  ( ( k  e.  A  |->  C )  o.  f ) ) `
 ( # `  A
) ) ) )
8269, 74, 813eqtr4d 2484 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  ( B  +  C ) ) `  m )  =  ( sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  +  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) ) )
83 sumfc 12534 . . . . . 6  |-  sum_ m  e.  A  ( (
k  e.  A  |->  ( B  +  C ) ) `  m )  =  sum_ k  e.  A  ( B  +  C
)
84 sumfc 12534 . . . . . . 7  |-  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
85 sumfc 12534 . . . . . . 7  |-  sum_ m  e.  A  ( (
k  e.  A  |->  C ) `  m )  =  sum_ k  e.  A  C
8684, 85oveq12i 6122 . . . . . 6  |-  ( sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m )  +  sum_ m  e.  A  ( ( k  e.  A  |->  C ) `  m ) )  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C )
8782, 83, 863eqtr3g 2497 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
8887expr 600 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
8988exlimdv 1647 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
9089expimpd 588 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  sum_ k  e.  A  ( B  +  C )  =  (
sum_ k  e.  A  B  +  sum_ k  e.  A  C ) ) )
91 fsumadd.1 . . 3  |-  ( ph  ->  A  e.  Fin )
92 fz1f1o 12535 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
9391, 92syl 16 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
9412, 90, 93mpjaod 372 1  |-  ( ph  -> 
sum_ k  e.  A  ( B  +  C
)  =  ( sum_ k  e.  A  B  +  sum_ k  e.  A  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 359    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1727   A.wral 2711   _Vcvv 2962   (/)c0 3613    e. cmpt 4291    o. ccom 4911   -->wf 5479   -1-1-onto->wf1o 5482   ` cfv 5483  (class class class)co 6110   Fincfn 7138   CCcc 9019   0cc0 9021   1c1 9022    + caddc 9024   NNcn 10031   ZZ>=cuz 10519   ...cfz 11074    seq cseq 11354   #chash 11649   sum_csu 12510
This theorem is referenced by:  fsumsplit  12564  fsumsub  12602  binomlem  12639  pcbc  13300  ovollb2lem  19415  ovoliunlem1  19429  itg1addlem5  19621  itgsplit  19756  plyaddlem1  20163  basellem8  20901  logfaclbnd  21037  dchrvmasum2if  21222  mudivsum  21255  logsqvma  21267  selberglem1  21270  selberglem2  21271  selberg  21273  selberg2  21276  selberg3lem1  21282  selberg4  21286  pntsval2  21301  binomfallfaclem2  25387  ax5seglem9  25907  csbrn  26494  trirn  26495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-rep 4345  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-inf2 7625  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098  ax-pre-sup 9099
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rmo 2719  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-se 4571  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-isom 5492  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-sup 7475  df-oi 7508  df-card 7857  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-div 9709  df-nn 10032  df-2 10089  df-3 10090  df-n0 10253  df-z 10314  df-uz 10520  df-rp 10644  df-fz 11075  df-fzo 11167  df-seq 11355  df-exp 11414  df-hash 11650  df-cj 11935  df-re 11936  df-im 11937  df-sqr 12071  df-abs 12072  df-clim 12313  df-sum 12511
  Copyright terms: Public domain W3C validator