MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumcllem Unicode version

Theorem fsumcllem 12205
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumcllem.1  |-  ( ph  ->  S  C_  CC )
fsumcllem.2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
fsumcllem.3  |-  ( ph  ->  A  e.  Fin )
fsumcllem.4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
fsumcllem.5  |-  ( ph  ->  0  e.  S )
Assertion
Ref Expression
fsumcllem  |-  ( ph  -> 
sum_ k  e.  A  B  e.  S )
Distinct variable groups:    x, k,
y, A    x, B, y    ph, k, x, y    S, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fsumcllem
StepHypRef Expression
1 simpr 447 . . . . 5  |-  ( (
ph  /\  A  =  (/) )  ->  A  =  (/) )
21sumeq1d 12174 . . . 4  |-  ( (
ph  /\  A  =  (/) )  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
3 sum0 12194 . . . 4  |-  sum_ k  e.  (/)  B  =  0
42, 3syl6eq 2331 . . 3  |-  ( (
ph  /\  A  =  (/) )  ->  sum_ k  e.  A  B  =  0 )
5 fsumcllem.5 . . . 4  |-  ( ph  ->  0  e.  S )
65adantr 451 . . 3  |-  ( (
ph  /\  A  =  (/) )  ->  0  e.  S )
74, 6eqeltrd 2357 . 2  |-  ( (
ph  /\  A  =  (/) )  ->  sum_ k  e.  A  B  e.  S
)
8 fsumcllem.1 . . . 4  |-  ( ph  ->  S  C_  CC )
98adantr 451 . . 3  |-  ( (
ph  /\  A  =/=  (/) )  ->  S  C_  CC )
10 fsumcllem.2 . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  +  y )  e.  S )
1110adantlr 695 . . 3  |-  ( ( ( ph  /\  A  =/=  (/) )  /\  (
x  e.  S  /\  y  e.  S )
)  ->  ( x  +  y )  e.  S )
12 fsumcllem.3 . . . 4  |-  ( ph  ->  A  e.  Fin )
1312adantr 451 . . 3  |-  ( (
ph  /\  A  =/=  (/) )  ->  A  e.  Fin )
14 fsumcllem.4 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  S )
1514adantlr 695 . . 3  |-  ( ( ( ph  /\  A  =/=  (/) )  /\  k  e.  A )  ->  B  e.  S )
16 simpr 447 . . 3  |-  ( (
ph  /\  A  =/=  (/) )  ->  A  =/=  (/) )
179, 11, 13, 15, 16fsumcl2lem 12204 . 2  |-  ( (
ph  /\  A  =/=  (/) )  ->  sum_ k  e.  A  B  e.  S
)
187, 17pm2.61dane 2524 1  |-  ( ph  -> 
sum_ k  e.  A  B  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446    C_ wss 3152   (/)c0 3455  (class class class)co 5858   Fincfn 6863   CCcc 8735   0cc0 8737    + caddc 8740   sum_csu 12158
This theorem is referenced by:  fsumcl  12206  fsumrecl  12207  fsumzcl  12208  fsumnn0cl  12209  fsumge0  12253  plymullem  19598  efnnfsumcl  20340  efchtdvds  20397  fsumrp0cl  23334  fsumcnsrcl  27371
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159
  Copyright terms: Public domain W3C validator