MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvds Unicode version

Theorem fsumdvds 12663
Description: If every term in a sum is divisible by  N, then so is the sum. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypotheses
Ref Expression
fsumdvds.1  |-  ( ph  ->  A  e.  Fin )
fsumdvds.2  |-  ( ph  ->  N  e.  ZZ )
fsumdvds.3  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
fsumdvds.4  |-  ( (
ph  /\  k  e.  A )  ->  N  ||  B )
Assertion
Ref Expression
fsumdvds  |-  ( ph  ->  N  ||  sum_ k  e.  A  B )
Distinct variable groups:    A, k    k, N    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem fsumdvds
StepHypRef Expression
1 0z 10124 . . . 4  |-  0  e.  ZZ
2 dvds0 12635 . . . 4  |-  ( 0  e.  ZZ  ->  0  ||  0 )
31, 2mp1i 11 . . 3  |-  ( (
ph  /\  N  = 
0 )  ->  0  ||  0 )
4 simpr 447 . . 3  |-  ( (
ph  /\  N  = 
0 )  ->  N  =  0 )
5 simplr 731 . . . . . . 7  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  N  =  0 )
6 fsumdvds.4 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  N  ||  B )
76adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  N  ||  B )
85, 7eqbrtrrd 4124 . . . . . 6  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  0  ||  B )
9 fsumdvds.3 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  ZZ )
109adantlr 695 . . . . . . 7  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  B  e.  ZZ )
11 0dvds 12640 . . . . . . 7  |-  ( B  e.  ZZ  ->  (
0  ||  B  <->  B  = 
0 ) )
1210, 11syl 15 . . . . . 6  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  ( 0  ||  B  <->  B  =  0 ) )
138, 12mpbid 201 . . . . 5  |-  ( ( ( ph  /\  N  =  0 )  /\  k  e.  A )  ->  B  =  0 )
1413sumeq2dv 12267 . . . 4  |-  ( (
ph  /\  N  = 
0 )  ->  sum_ k  e.  A  B  =  sum_ k  e.  A  0 )
15 fsumdvds.1 . . . . . . 7  |-  ( ph  ->  A  e.  Fin )
1615adantr 451 . . . . . 6  |-  ( (
ph  /\  N  = 
0 )  ->  A  e.  Fin )
1716olcd 382 . . . . 5  |-  ( (
ph  /\  N  = 
0 )  ->  ( A  C_  ( ZZ>= `  0
)  \/  A  e. 
Fin ) )
18 sumz 12286 . . . . 5  |-  ( ( A  C_  ( ZZ>= ` 
0 )  \/  A  e.  Fin )  ->  sum_ k  e.  A  0  = 
0 )
1917, 18syl 15 . . . 4  |-  ( (
ph  /\  N  = 
0 )  ->  sum_ k  e.  A  0  = 
0 )
2014, 19eqtrd 2390 . . 3  |-  ( (
ph  /\  N  = 
0 )  ->  sum_ k  e.  A  B  = 
0 )
213, 4, 203brtr4d 4132 . 2  |-  ( (
ph  /\  N  = 
0 )  ->  N  || 
sum_ k  e.  A  B )
2215adantr 451 . . . . 5  |-  ( (
ph  /\  N  =/=  0 )  ->  A  e.  Fin )
23 fsumdvds.2 . . . . . . 7  |-  ( ph  ->  N  e.  ZZ )
2423adantr 451 . . . . . 6  |-  ( (
ph  /\  N  =/=  0 )  ->  N  e.  ZZ )
2524zcnd 10207 . . . . 5  |-  ( (
ph  /\  N  =/=  0 )  ->  N  e.  CC )
269adantlr 695 . . . . . 6  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  B  e.  ZZ )
2726zcnd 10207 . . . . 5  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  B  e.  CC )
28 simpr 447 . . . . 5  |-  ( (
ph  /\  N  =/=  0 )  ->  N  =/=  0 )
2922, 25, 27, 28fsumdivc 12339 . . . 4  |-  ( (
ph  /\  N  =/=  0 )  ->  ( sum_ k  e.  A  B  /  N )  =  sum_ k  e.  A  ( B  /  N ) )
306adantlr 695 . . . . . 6  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  N  ||  B )
3124adantr 451 . . . . . . 7  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  N  e.  ZZ )
32 simplr 731 . . . . . . 7  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  N  =/=  0 )
33 dvdsval2 12625 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  B  e.  ZZ )  ->  ( N  ||  B  <->  ( B  /  N )  e.  ZZ ) )
3431, 32, 26, 33syl3anc 1182 . . . . . 6  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  ( N  ||  B  <->  ( B  /  N )  e.  ZZ ) )
3530, 34mpbid 201 . . . . 5  |-  ( ( ( ph  /\  N  =/=  0 )  /\  k  e.  A )  ->  ( B  /  N )  e.  ZZ )
3622, 35fsumzcl 12299 . . . 4  |-  ( (
ph  /\  N  =/=  0 )  ->  sum_ k  e.  A  ( B  /  N )  e.  ZZ )
3729, 36eqeltrd 2432 . . 3  |-  ( (
ph  /\  N  =/=  0 )  ->  ( sum_ k  e.  A  B  /  N )  e.  ZZ )
3815, 9fsumzcl 12299 . . . . 5  |-  ( ph  -> 
sum_ k  e.  A  B  e.  ZZ )
3938adantr 451 . . . 4  |-  ( (
ph  /\  N  =/=  0 )  ->  sum_ k  e.  A  B  e.  ZZ )
40 dvdsval2 12625 . . . 4  |-  ( ( N  e.  ZZ  /\  N  =/=  0  /\  sum_ k  e.  A  B  e.  ZZ )  ->  ( N  ||  sum_ k  e.  A  B 
<->  ( sum_ k  e.  A  B  /  N )  e.  ZZ ) )
4124, 28, 39, 40syl3anc 1182 . . 3  |-  ( (
ph  /\  N  =/=  0 )  ->  ( N  ||  sum_ k  e.  A  B 
<->  ( sum_ k  e.  A  B  /  N )  e.  ZZ ) )
4237, 41mpbird 223 . 2  |-  ( (
ph  /\  N  =/=  0 )  ->  N  || 
sum_ k  e.  A  B )
4321, 42pm2.61dane 2599 1  |-  ( ph  ->  N  ||  sum_ k  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1642    e. wcel 1710    =/= wne 2521    C_ wss 3228   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   Fincfn 6948   0cc0 8824    / cdiv 9510   ZZcz 10113   ZZ>=cuz 10319   sum_csu 12249    || cdivides 12622
This theorem is referenced by:  3dvds  12682  sylow1lem3  15004  sylow2alem2  15022
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-se 4432  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-isom 5343  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-sup 7281  df-oi 7312  df-card 7659  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-n0 10055  df-z 10114  df-uz 10320  df-rp 10444  df-fz 10872  df-fzo 10960  df-seq 11136  df-exp 11195  df-hash 11428  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-clim 12052  df-sum 12250  df-dvds 12623
  Copyright terms: Public domain W3C validator