MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdscom Unicode version

Theorem fsumdvdscom 20838
Description: A double commutation of divisor sums based on fsumdvdsdiag 20837. Note that  A depends on both  j and  k. (Contributed by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
fsumdvdscom.1  |-  ( ph  ->  N  e.  NN )
fsumdvdscom.2  |-  ( j  =  ( k  x.  m )  ->  A  =  B )
fsumdvdscom.3  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  j } ) )  ->  A  e.  CC )
Assertion
Ref Expression
fsumdvdscom  |-  ( ph  -> 
sum_ j  e.  {
x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  j } A  =  sum_ k  e.  { x  e.  NN  |  x  ||  N } sum_ m  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } B
)
Distinct variable groups:    A, m    B, j    j, k, m, x, N    ph, j, k, m
Allowed substitution hints:    ph( x)    A( x, j, k)    B( x, k, m)

Proof of Theorem fsumdvdscom
Dummy variables  u  v  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2524 . . 3  |-  F/_ u sum_ k  e.  { x  e.  NN  |  x  ||  j } A
2 nfcv 2524 . . . 4  |-  F/_ j { x  e.  NN  |  x  ||  u }
3 nfcsb1v 3227 . . . 4  |-  F/_ j [_ u  /  j ]_ A
42, 3nfsum 12413 . . 3  |-  F/_ j sum_ k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A
5 breq2 4158 . . . . 5  |-  ( j  =  u  ->  (
x  ||  j  <->  x  ||  u
) )
65rabbidv 2892 . . . 4  |-  ( j  =  u  ->  { x  e.  NN  |  x  ||  j }  =  {
x  e.  NN  |  x  ||  u } )
7 csbeq1a 3203 . . . . 5  |-  ( j  =  u  ->  A  =  [_ u  /  j ]_ A )
87adantr 452 . . . 4  |-  ( ( j  =  u  /\  k  e.  { x  e.  NN  |  x  ||  j } )  ->  A  =  [_ u  /  j ]_ A )
96, 8sumeq12dv 12428 . . 3  |-  ( j  =  u  ->  sum_ k  e.  { x  e.  NN  |  x  ||  j } A  =  sum_ k  e.  { x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A )
101, 4, 9cbvsumi 12419 . 2  |-  sum_ j  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  j } A  =  sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A
11 breq2 4158 . . . . . 6  |-  ( u  =  ( N  / 
v )  ->  (
x  ||  u  <->  x  ||  ( N  /  v ) ) )
1211rabbidv 2892 . . . . 5  |-  ( u  =  ( N  / 
v )  ->  { x  e.  NN  |  x  ||  u }  =  {
x  e.  NN  |  x  ||  ( N  / 
v ) } )
13 csbeq1 3198 . . . . . 6  |-  ( u  =  ( N  / 
v )  ->  [_ u  /  j ]_ A  =  [_ ( N  / 
v )  /  j ]_ A )
1413adantr 452 . . . . 5  |-  ( ( u  =  ( N  /  v )  /\  k  e.  { x  e.  NN  |  x  ||  u } )  ->  [_ u  /  j ]_ A  =  [_ ( N  / 
v )  /  j ]_ A )
1512, 14sumeq12dv 12428 . . . 4  |-  ( u  =  ( N  / 
v )  ->  sum_ k  e.  { x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  =  sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } [_ ( N  /  v )  / 
j ]_ A )
16 fzfid 11240 . . . . 5  |-  ( ph  ->  ( 1 ... N
)  e.  Fin )
17 fsumdvdscom.1 . . . . . 6  |-  ( ph  ->  N  e.  NN )
18 sgmss 20757 . . . . . 6  |-  ( N  e.  NN  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N ) )
1917, 18syl 16 . . . . 5  |-  ( ph  ->  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N
) )
20 ssfi 7266 . . . . 5  |-  ( ( ( 1 ... N
)  e.  Fin  /\  { x  e.  NN  |  x  ||  N }  C_  ( 1 ... N
) )  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
2116, 19, 20syl2anc 643 . . . 4  |-  ( ph  ->  { x  e.  NN  |  x  ||  N }  e.  Fin )
22 eqid 2388 . . . . . 6  |-  { x  e.  NN  |  x  ||  N }  =  {
x  e.  NN  |  x  ||  N }
23 eqid 2388 . . . . . 6  |-  ( z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) )  =  ( z  e. 
{ x  e.  NN  |  x  ||  N }  |->  ( N  /  z
) )
2422, 23dvdsflip 20835 . . . . 5  |-  ( N  e.  NN  ->  (
z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) : { x  e.  NN  |  x  ||  N } -1-1-onto-> { x  e.  NN  |  x  ||  N }
)
2517, 24syl 16 . . . 4  |-  ( ph  ->  ( z  e.  {
x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) : { x  e.  NN  |  x  ||  N } -1-1-onto-> { x  e.  NN  |  x  ||  N }
)
26 oveq2 6029 . . . . . 6  |-  ( z  =  v  ->  ( N  /  z )  =  ( N  /  v
) )
27 ovex 6046 . . . . . 6  |-  ( N  /  z )  e. 
_V
2826, 23, 27fvmpt3i 5749 . . . . 5  |-  ( v  e.  { x  e.  NN  |  x  ||  N }  ->  ( ( z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) `
 v )  =  ( N  /  v
) )
2928adantl 453 . . . 4  |-  ( (
ph  /\  v  e.  { x  e.  NN  |  x  ||  N } )  ->  ( ( z  e.  { x  e.  NN  |  x  ||  N }  |->  ( N  /  z ) ) `
 v )  =  ( N  /  v
) )
30 fzfid 11240 . . . . . 6  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  ( 1 ... u )  e.  Fin )
31 ssrab2 3372 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  N }  C_  NN
32 simpr 448 . . . . . . . 8  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  {
x  e.  NN  |  x  ||  N } )
3331, 32sseldi 3290 . . . . . . 7  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  u  e.  NN )
34 sgmss 20757 . . . . . . 7  |-  ( u  e.  NN  ->  { x  e.  NN  |  x  ||  u }  C_  ( 1 ... u ) )
3533, 34syl 16 . . . . . 6  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  u }  C_  ( 1 ... u ) )
36 ssfi 7266 . . . . . 6  |-  ( ( ( 1 ... u
)  e.  Fin  /\  { x  e.  NN  |  x  ||  u }  C_  ( 1 ... u
) )  ->  { x  e.  NN  |  x  ||  u }  e.  Fin )
3730, 35, 36syl2anc 643 . . . . 5  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  u }  e.  Fin )
38 fsumdvdscom.3 . . . . . . . . 9  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  j } ) )  ->  A  e.  CC )
3938ralrimivva 2742 . . . . . . . 8  |-  ( ph  ->  A. j  e.  {
x  e.  NN  |  x  ||  N } A. k  e.  { x  e.  NN  |  x  ||  j } A  e.  CC )
40 nfv 1626 . . . . . . . . 9  |-  F/ u A. k  e.  { x  e.  NN  |  x  ||  j } A  e.  CC
413nfel1 2534 . . . . . . . . . 10  |-  F/ j
[_ u  /  j ]_ A  e.  CC
422, 41nfral 2703 . . . . . . . . 9  |-  F/ j A. k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  e.  CC
437eleq1d 2454 . . . . . . . . . 10  |-  ( j  =  u  ->  ( A  e.  CC  <->  [_ u  / 
j ]_ A  e.  CC ) )
446, 43raleqbidv 2860 . . . . . . . . 9  |-  ( j  =  u  ->  ( A. k  e.  { x  e.  NN  |  x  ||  j } A  e.  CC  <->  A. k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A  e.  CC ) )
4540, 42, 44cbvral 2872 . . . . . . . 8  |-  ( A. j  e.  { x  e.  NN  |  x  ||  N } A. k  e. 
{ x  e.  NN  |  x  ||  j } A  e.  CC  <->  A. u  e.  { x  e.  NN  |  x  ||  N } A. k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A  e.  CC )
4639, 45sylib 189 . . . . . . 7  |-  ( ph  ->  A. u  e.  {
x  e.  NN  |  x  ||  N } A. k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A  e.  CC )
4746r19.21bi 2748 . . . . . 6  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  A. k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  e.  CC )
4847r19.21bi 2748 . . . . 5  |-  ( ( ( ph  /\  u  e.  { x  e.  NN  |  x  ||  N }
)  /\  k  e.  { x  e.  NN  |  x  ||  u } )  ->  [_ u  /  j ]_ A  e.  CC )
4937, 48fsumcl 12455 . . . 4  |-  ( (
ph  /\  u  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  e.  CC )
5015, 21, 25, 29, 49fsumf1o 12445 . . 3  |-  ( ph  -> 
sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  =  sum_ v  e.  {
x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } [_ ( N  /  v )  / 
j ]_ A )
51 dvdsdivcl 20834 . . . . . . . 8  |-  ( ( N  e.  NN  /\  v  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  v )  e. 
{ x  e.  NN  |  x  ||  N }
)
5217, 51sylan 458 . . . . . . 7  |-  ( (
ph  /\  v  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  / 
v )  e.  {
x  e.  NN  |  x  ||  N } )
5346adantr 452 . . . . . . 7  |-  ( (
ph  /\  v  e.  { x  e.  NN  |  x  ||  N } )  ->  A. u  e.  {
x  e.  NN  |  x  ||  N } A. k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A  e.  CC )
5413eleq1d 2454 . . . . . . . . 9  |-  ( u  =  ( N  / 
v )  ->  ( [_ u  /  j ]_ A  e.  CC  <->  [_ ( N  /  v
)  /  j ]_ A  e.  CC )
)
5512, 54raleqbidv 2860 . . . . . . . 8  |-  ( u  =  ( N  / 
v )  ->  ( A. k  e.  { x  e.  NN  |  x  ||  u } [_ u  / 
j ]_ A  e.  CC  <->  A. k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } [_ ( N  /  v )  / 
j ]_ A  e.  CC ) )
5655rspcv 2992 . . . . . . 7  |-  ( ( N  /  v )  e.  { x  e.  NN  |  x  ||  N }  ->  ( A. u  e.  { x  e.  NN  |  x  ||  N } A. k  e. 
{ x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  e.  CC  ->  A. k  e.  {
x  e.  NN  |  x  ||  ( N  / 
v ) } [_ ( N  /  v
)  /  j ]_ A  e.  CC )
)
5752, 53, 56sylc 58 . . . . . 6  |-  ( (
ph  /\  v  e.  { x  e.  NN  |  x  ||  N } )  ->  A. k  e.  {
x  e.  NN  |  x  ||  ( N  / 
v ) } [_ ( N  /  v
)  /  j ]_ A  e.  CC )
5857r19.21bi 2748 . . . . 5  |-  ( ( ( ph  /\  v  e.  { x  e.  NN  |  x  ||  N }
)  /\  k  e.  { x  e.  NN  |  x  ||  ( N  / 
v ) } )  ->  [_ ( N  / 
v )  /  j ]_ A  e.  CC )
5958anasss 629 . . . 4  |-  ( (
ph  /\  ( v  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } ) )  ->  [_ ( N  / 
v )  /  j ]_ A  e.  CC )
6017, 59fsumdvdsdiag 20837 . . 3  |-  ( ph  -> 
sum_ v  e.  {
x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } [_ ( N  /  v )  / 
j ]_ A  =  sum_ k  e.  { x  e.  NN  |  x  ||  N } sum_ v  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } [_ ( N  /  v
)  /  j ]_ A )
61 oveq2 6029 . . . . . . 7  |-  ( v  =  ( ( N  /  k )  /  m )  ->  ( N  /  v )  =  ( N  /  (
( N  /  k
)  /  m ) ) )
6261csbeq1d 3201 . . . . . 6  |-  ( v  =  ( ( N  /  k )  /  m )  ->  [_ ( N  /  v )  / 
j ]_ A  =  [_ ( N  /  (
( N  /  k
)  /  m ) )  /  j ]_ A )
63 fzfid 11240 . . . . . . 7  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( 1 ... ( N  /  k
) )  e.  Fin )
64 dvdsdivcl 20834 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  k )  e. 
{ x  e.  NN  |  x  ||  N }
)
6531, 64sseldi 3290 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  k )  e.  NN )
6617, 65sylan 458 . . . . . . . 8  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  / 
k )  e.  NN )
67 sgmss 20757 . . . . . . . 8  |-  ( ( N  /  k )  e.  NN  ->  { x  e.  NN  |  x  ||  ( N  /  k
) }  C_  (
1 ... ( N  / 
k ) ) )
6866, 67syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  ( N  /  k
) }  C_  (
1 ... ( N  / 
k ) ) )
69 ssfi 7266 . . . . . . 7  |-  ( ( ( 1 ... ( N  /  k ) )  e.  Fin  /\  {
x  e.  NN  |  x  ||  ( N  / 
k ) }  C_  ( 1 ... ( N  /  k ) ) )  ->  { x  e.  NN  |  x  ||  ( N  /  k
) }  e.  Fin )
7063, 68, 69syl2anc 643 . . . . . 6  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  { x  e.  NN  |  x  ||  ( N  /  k
) }  e.  Fin )
71 eqid 2388 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  ( N  /  k
) }  =  {
x  e.  NN  |  x  ||  ( N  / 
k ) }
72 eqid 2388 . . . . . . . 8  |-  ( z  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  |->  ( ( N  /  k )  /  z ) )  =  ( z  e. 
{ x  e.  NN  |  x  ||  ( N  /  k ) } 
|->  ( ( N  / 
k )  /  z
) )
7371, 72dvdsflip 20835 . . . . . . 7  |-  ( ( N  /  k )  e.  NN  ->  (
z  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  |->  ( ( N  /  k )  /  z ) ) : { x  e.  NN  |  x  ||  ( N  /  k
) } -1-1-onto-> { x  e.  NN  |  x  ||  ( N  /  k ) } )
7466, 73syl 16 . . . . . 6  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( z  e. 
{ x  e.  NN  |  x  ||  ( N  /  k ) } 
|->  ( ( N  / 
k )  /  z
) ) : {
x  e.  NN  |  x  ||  ( N  / 
k ) } -1-1-onto-> { x  e.  NN  |  x  ||  ( N  /  k ) } )
75 oveq2 6029 . . . . . . . 8  |-  ( z  =  m  ->  (
( N  /  k
)  /  z )  =  ( ( N  /  k )  /  m ) )
76 ovex 6046 . . . . . . . 8  |-  ( ( N  /  k )  /  z )  e. 
_V
7775, 72, 76fvmpt3i 5749 . . . . . . 7  |-  ( m  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  ->  (
( z  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) }  |->  ( ( N  /  k
)  /  z ) ) `  m )  =  ( ( N  /  k )  /  m ) )
7877adantl 453 . . . . . 6  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( ( z  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  |->  ( ( N  /  k )  /  z ) ) `
 m )  =  ( ( N  / 
k )  /  m
) )
7917fsumdvdsdiaglem 20836 . . . . . . . 8  |-  ( ph  ->  ( ( k  e. 
{ x  e.  NN  |  x  ||  N }  /\  v  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } )  -> 
( v  e.  {
x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } ) ) )
8059ex 424 . . . . . . . 8  |-  ( ph  ->  ( ( v  e. 
{ x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  v
) } )  ->  [_ ( N  /  v
)  /  j ]_ A  e.  CC )
)
8179, 80syld 42 . . . . . . 7  |-  ( ph  ->  ( ( k  e. 
{ x  e.  NN  |  x  ||  N }  /\  v  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } )  ->  [_ ( N  /  v
)  /  j ]_ A  e.  CC )
)
8281impl 604 . . . . . 6  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  v  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  [_ ( N  / 
v )  /  j ]_ A  e.  CC )
8362, 70, 74, 78, 82fsumf1o 12445 . . . . 5  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ v  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } [_ ( N  /  v
)  /  j ]_ A  =  sum_ m  e. 
{ x  e.  NN  |  x  ||  ( N  /  k ) }
[_ ( N  / 
( ( N  / 
k )  /  m
) )  /  j ]_ A )
84 ovex 6046 . . . . . . . 8  |-  ( N  /  ( ( N  /  k )  /  m ) )  e. 
_V
8584a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( N  / 
( ( N  / 
k )  /  m
) )  e.  _V )
86 nncn 9941 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  e.  CC )
87 nnne0 9965 . . . . . . . . . . . . . . . . 17  |-  ( N  e.  NN  ->  N  =/=  0 )
8886, 87jca 519 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN  ->  ( N  e.  CC  /\  N  =/=  0 ) )
8917, 88syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( N  e.  CC  /\  N  =/=  0 ) )
9089ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( N  e.  CC  /\  N  =/=  0 ) )
9190simpld 446 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  N  e.  CC )
92 elrabi 3034 . . . . . . . . . . . . . . . 16  |-  ( k  e.  { x  e.  NN  |  x  ||  N }  ->  k  e.  NN )
9392adantl 453 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  k  e.  NN )
9493adantr 452 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  k  e.  NN )
95 nncn 9941 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  k  e.  CC )
96 nnne0 9965 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  k  =/=  0 )
9795, 96jca 519 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
k  e.  CC  /\  k  =/=  0 ) )
9894, 97syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( k  e.  CC  /\  k  =/=  0 ) )
99 elrabi 3034 . . . . . . . . . . . . . . 15  |-  ( m  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  ->  m  e.  NN )
10099adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  m  e.  NN )
101 nncn 9941 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  CC )
102 nnne0 9965 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  =/=  0 )
103101, 102jca 519 . . . . . . . . . . . . . 14  |-  ( m  e.  NN  ->  (
m  e.  CC  /\  m  =/=  0 ) )
104100, 103syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( m  e.  CC  /\  m  =/=  0 ) )
105 divdiv1 9658 . . . . . . . . . . . . 13  |-  ( ( N  e.  CC  /\  ( k  e.  CC  /\  k  =/=  0 )  /\  ( m  e.  CC  /\  m  =/=  0 ) )  -> 
( ( N  / 
k )  /  m
)  =  ( N  /  ( k  x.  m ) ) )
10691, 98, 104, 105syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( ( N  /  k )  /  m )  =  ( N  /  ( k  x.  m ) ) )
107106oveq2d 6037 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( N  / 
( ( N  / 
k )  /  m
) )  =  ( N  /  ( N  /  ( k  x.  m ) ) ) )
108 nnmulcl 9956 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  m  e.  NN )  ->  ( k  x.  m
)  e.  NN )
10993, 99, 108syl2an 464 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( k  x.  m )  e.  NN )
110 nncn 9941 . . . . . . . . . . . . . 14  |-  ( ( k  x.  m )  e.  NN  ->  (
k  x.  m )  e.  CC )
111 nnne0 9965 . . . . . . . . . . . . . 14  |-  ( ( k  x.  m )  e.  NN  ->  (
k  x.  m )  =/=  0 )
112110, 111jca 519 . . . . . . . . . . . . 13  |-  ( ( k  x.  m )  e.  NN  ->  (
( k  x.  m
)  e.  CC  /\  ( k  x.  m
)  =/=  0 ) )
113109, 112syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( ( k  x.  m )  e.  CC  /\  ( k  x.  m )  =/=  0 ) )
114 ddcan 9661 . . . . . . . . . . . 12  |-  ( ( ( N  e.  CC  /\  N  =/=  0 )  /\  ( ( k  x.  m )  e.  CC  /\  ( k  x.  m )  =/=  0 ) )  -> 
( N  /  ( N  /  ( k  x.  m ) ) )  =  ( k  x.  m ) )
11590, 113, 114syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( N  / 
( N  /  (
k  x.  m ) ) )  =  ( k  x.  m ) )
116107, 115eqtrd 2420 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( N  / 
( ( N  / 
k )  /  m
) )  =  ( k  x.  m ) )
117116eqeq2d 2399 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  ( j  =  ( N  /  (
( N  /  k
)  /  m ) )  <->  j  =  ( k  x.  m ) ) )
118117biimpa 471 . . . . . . . 8  |-  ( ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  /\  m  e.  { x  e.  NN  |  x  ||  ( N  /  k ) } )  /\  j  =  ( N  /  (
( N  /  k
)  /  m ) ) )  ->  j  =  ( k  x.  m ) )
119 fsumdvdscom.2 . . . . . . . 8  |-  ( j  =  ( k  x.  m )  ->  A  =  B )
120118, 119syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  /\  m  e.  { x  e.  NN  |  x  ||  ( N  /  k ) } )  /\  j  =  ( N  /  (
( N  /  k
)  /  m ) ) )  ->  A  =  B )
12185, 120csbied 3237 . . . . . 6  |-  ( ( ( ph  /\  k  e.  { x  e.  NN  |  x  ||  N }
)  /\  m  e.  { x  e.  NN  |  x  ||  ( N  / 
k ) } )  ->  [_ ( N  / 
( ( N  / 
k )  /  m
) )  /  j ]_ A  =  B
)
122121sumeq2dv 12425 . . . . 5  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ m  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } [_ ( N  /  (
( N  /  k
)  /  m ) )  /  j ]_ A  =  sum_ m  e. 
{ x  e.  NN  |  x  ||  ( N  /  k ) } B )
12383, 122eqtrd 2420 . . . 4  |-  ( (
ph  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  sum_ v  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } [_ ( N  /  v
)  /  j ]_ A  =  sum_ m  e. 
{ x  e.  NN  |  x  ||  ( N  /  k ) } B )
124123sumeq2dv 12425 . . 3  |-  ( ph  -> 
sum_ k  e.  {
x  e.  NN  |  x  ||  N } sum_ v  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } [_ ( N  /  v )  / 
j ]_ A  =  sum_ k  e.  { x  e.  NN  |  x  ||  N } sum_ m  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } B
)
12550, 60, 1243eqtrd 2424 . 2  |-  ( ph  -> 
sum_ u  e.  { x  e.  NN  |  x  ||  N } sum_ k  e.  {
x  e.  NN  |  x  ||  u } [_ u  /  j ]_ A  =  sum_ k  e.  {
x  e.  NN  |  x  ||  N } sum_ m  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } B )
12610, 125syl5eq 2432 1  |-  ( ph  -> 
sum_ j  e.  {
x  e.  NN  |  x  ||  N } sum_ k  e.  { x  e.  NN  |  x  ||  j } A  =  sum_ k  e.  { x  e.  NN  |  x  ||  N } sum_ m  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   {crab 2654   _Vcvv 2900   [_csb 3195    C_ wss 3264   class class class wbr 4154    e. cmpt 4208   -1-1-onto->wf1o 5394   ` cfv 5395  (class class class)co 6021   Fincfn 7046   CCcc 8922   0cc0 8924   1c1 8925    x. cmul 8929    / cdiv 9610   NNcn 9933   ...cfz 10976   sum_csu 12407    || cdivides 12780
This theorem is referenced by:  logsqvma  21104
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-inf2 7530  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-se 4484  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-isom 5404  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-fin 7050  df-sup 7382  df-oi 7413  df-card 7760  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-div 9611  df-nn 9934  df-2 9991  df-3 9992  df-n0 10155  df-z 10216  df-uz 10422  df-rp 10546  df-fz 10977  df-fzo 11067  df-seq 11252  df-exp 11311  df-hash 11547  df-cj 11832  df-re 11833  df-im 11834  df-sqr 11968  df-abs 11969  df-clim 12210  df-sum 12408  df-dvds 12781
  Copyright terms: Public domain W3C validator