MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumdvdsdiaglem Unicode version

Theorem fsumdvdsdiaglem 20828
Description: A "diagonal commutation" of divisor sums analogous to fsum0diag 12481. (Contributed by Mario Carneiro, 2-Jul-2015.) (Revised by Mario Carneiro, 8-Apr-2016.)
Hypothesis
Ref Expression
fsumdvdsdiag.1  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
fsumdvdsdiaglem  |-  ( ph  ->  ( ( j  e. 
{ x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } )  -> 
( k  e.  {
x  e.  NN  |  x  ||  N }  /\  j  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } ) ) )
Distinct variable groups:    j, k, x, N    ph, j, k
Allowed substitution hint:    ph( x)

Proof of Theorem fsumdvdsdiaglem
StepHypRef Expression
1 elrabi 3026 . . . . 5  |-  ( k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) }  ->  k  e.  NN )
21ad2antll 710 . . . 4  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  k  e.  NN )
3 breq1 4149 . . . . . . . 8  |-  ( x  =  k  ->  (
x  ||  ( N  /  j )  <->  k  ||  ( N  /  j
) ) )
43elrab 3028 . . . . . . 7  |-  ( k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) }  <->  ( k  e.  NN  /\  k  ||  ( N  /  j
) ) )
54simprbi 451 . . . . . 6  |-  ( k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) }  ->  k  ||  ( N  /  j
) )
65ad2antll 710 . . . . 5  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  k  ||  ( N  /  j ) )
7 fsumdvdsdiag.1 . . . . . . . 8  |-  ( ph  ->  N  e.  NN )
87adantr 452 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  N  e.  NN )
9 simprl 733 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  j  e.  {
x  e.  NN  |  x  ||  N } )
10 dvdsdivcl 20826 . . . . . . 7  |-  ( ( N  e.  NN  /\  j  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  j )  e. 
{ x  e.  NN  |  x  ||  N }
)
118, 9, 10syl2anc 643 . . . . . 6  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( N  / 
j )  e.  {
x  e.  NN  |  x  ||  N } )
12 breq1 4149 . . . . . . . 8  |-  ( x  =  ( N  / 
j )  ->  (
x  ||  N  <->  ( N  /  j )  ||  N ) )
1312elrab 3028 . . . . . . 7  |-  ( ( N  /  j )  e.  { x  e.  NN  |  x  ||  N }  <->  ( ( N  /  j )  e.  NN  /\  ( N  /  j )  ||  N ) )
1413simprbi 451 . . . . . 6  |-  ( ( N  /  j )  e.  { x  e.  NN  |  x  ||  N }  ->  ( N  /  j )  ||  N )
1511, 14syl 16 . . . . 5  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( N  / 
j )  ||  N
)
162nnzd 10299 . . . . . 6  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  k  e.  ZZ )
17 elrabi 3026 . . . . . . . 8  |-  ( ( N  /  j )  e.  { x  e.  NN  |  x  ||  N }  ->  ( N  /  j )  e.  NN )
1811, 17syl 16 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( N  / 
j )  e.  NN )
1918nnzd 10299 . . . . . 6  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( N  / 
j )  e.  ZZ )
208nnzd 10299 . . . . . 6  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  N  e.  ZZ )
21 dvdstr 12803 . . . . . 6  |-  ( ( k  e.  ZZ  /\  ( N  /  j
)  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( k  ||  ( N  /  j
)  /\  ( N  /  j )  ||  N )  ->  k  ||  N ) )
2216, 19, 20, 21syl3anc 1184 . . . . 5  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( ( k 
||  ( N  / 
j )  /\  ( N  /  j )  ||  N )  ->  k  ||  N ) )
236, 15, 22mp2and 661 . . . 4  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  k  ||  N
)
24 breq1 4149 . . . . 5  |-  ( x  =  k  ->  (
x  ||  N  <->  k  ||  N ) )
2524elrab 3028 . . . 4  |-  ( k  e.  { x  e.  NN  |  x  ||  N }  <->  ( k  e.  NN  /\  k  ||  N ) )
262, 23, 25sylanbrc 646 . . 3  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  k  e.  {
x  e.  NN  |  x  ||  N } )
27 elrabi 3026 . . . . 5  |-  ( j  e.  { x  e.  NN  |  x  ||  N }  ->  j  e.  NN )
2827ad2antrl 709 . . . 4  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  j  e.  NN )
2928nnzd 10299 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  j  e.  ZZ )
3028nnne0d 9969 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  j  =/=  0
)
31 dvdsmulcr 12799 . . . . . . . 8  |-  ( ( k  e.  ZZ  /\  ( N  /  j
)  e.  ZZ  /\  ( j  e.  ZZ  /\  j  =/=  0 ) )  ->  ( (
k  x.  j ) 
||  ( ( N  /  j )  x.  j )  <->  k  ||  ( N  /  j
) ) )
3216, 19, 29, 30, 31syl112anc 1188 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( ( k  x.  j )  ||  ( ( N  / 
j )  x.  j
)  <->  k  ||  ( N  /  j ) ) )
336, 32mpbird 224 . . . . . 6  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( k  x.  j )  ||  (
( N  /  j
)  x.  j ) )
348nncnd 9941 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  N  e.  CC )
3528nncnd 9941 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  j  e.  CC )
3634, 35, 30divcan1d 9716 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( ( N  /  j )  x.  j )  =  N )
372nncnd 9941 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  k  e.  CC )
382nnne0d 9969 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  k  =/=  0
)
3934, 37, 38divcan2d 9717 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( k  x.  ( N  /  k
) )  =  N )
4036, 39eqtr4d 2415 . . . . . 6  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( ( N  /  j )  x.  j )  =  ( k  x.  ( N  /  k ) ) )
4133, 40breqtrd 4170 . . . . 5  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( k  x.  j )  ||  (
k  x.  ( N  /  k ) ) )
42 ssrab2 3364 . . . . . . . 8  |-  { x  e.  NN  |  x  ||  N }  C_  NN
43 dvdsdivcl 20826 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  { x  e.  NN  |  x  ||  N } )  ->  ( N  /  k )  e. 
{ x  e.  NN  |  x  ||  N }
)
448, 26, 43syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( N  / 
k )  e.  {
x  e.  NN  |  x  ||  N } )
4542, 44sseldi 3282 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( N  / 
k )  e.  NN )
4645nnzd 10299 . . . . . 6  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( N  / 
k )  e.  ZZ )
47 dvdscmulr 12798 . . . . . 6  |-  ( ( j  e.  ZZ  /\  ( N  /  k
)  e.  ZZ  /\  ( k  e.  ZZ  /\  k  =/=  0 ) )  ->  ( (
k  x.  j ) 
||  ( k  x.  ( N  /  k
) )  <->  j  ||  ( N  /  k
) ) )
4829, 46, 16, 38, 47syl112anc 1188 . . . . 5  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( ( k  x.  j )  ||  ( k  x.  ( N  /  k ) )  <-> 
j  ||  ( N  /  k ) ) )
4941, 48mpbid 202 . . . 4  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  j  ||  ( N  /  k ) )
50 breq1 4149 . . . . 5  |-  ( x  =  j  ->  (
x  ||  ( N  /  k )  <->  j  ||  ( N  /  k
) ) )
5150elrab 3028 . . . 4  |-  ( j  e.  { x  e.  NN  |  x  ||  ( N  /  k
) }  <->  ( j  e.  NN  /\  j  ||  ( N  /  k
) ) )
5228, 49, 51sylanbrc 646 . . 3  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  j  e.  {
x  e.  NN  |  x  ||  ( N  / 
k ) } )
5326, 52jca 519 . 2  |-  ( (
ph  /\  ( j  e.  { x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } ) )  ->  ( k  e. 
{ x  e.  NN  |  x  ||  N }  /\  j  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } ) )
5453ex 424 1  |-  ( ph  ->  ( ( j  e. 
{ x  e.  NN  |  x  ||  N }  /\  k  e.  { x  e.  NN  |  x  ||  ( N  /  j
) } )  -> 
( k  e.  {
x  e.  NN  |  x  ||  N }  /\  j  e.  { x  e.  NN  |  x  ||  ( N  /  k
) } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1717    =/= wne 2543   {crab 2646   class class class wbr 4146  (class class class)co 6013   0cc0 8916    x. cmul 8921    / cdiv 9602   NNcn 9925   ZZcz 10207    || cdivides 12772
This theorem is referenced by:  fsumdvdsdiag  20829  fsumdvdscom  20830
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-div 9603  df-nn 9926  df-n0 10147  df-z 10208  df-dvds 12773
  Copyright terms: Public domain W3C validator