MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumharmonic Structured version   Unicode version

Theorem fsumharmonic 20850
Description: Bound a finite sum based on the harmonic series, where the "strong" bound  C only applies asymptotically, and there is a "weak" bound  R for the remaining values. (Contributed by Mario Carneiro, 18-May-2016.)
Hypotheses
Ref Expression
fsumharmonic.a  |-  ( ph  ->  A  e.  RR+ )
fsumharmonic.t  |-  ( ph  ->  ( T  e.  RR  /\  1  <_  T )
)
fsumharmonic.r  |-  ( ph  ->  ( R  e.  RR  /\  0  <_  R )
)
fsumharmonic.b  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  B  e.  CC )
fsumharmonic.c  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  C  e.  RR )
fsumharmonic.0  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <_  C )
fsumharmonic.1  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  T  <_ 
( A  /  n
) )  ->  ( abs `  B )  <_ 
( C  x.  n
) )
fsumharmonic.2  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( A  /  n )  < 
T )  ->  ( abs `  B )  <_  R )
Assertion
Ref Expression
fsumharmonic  |-  ( ph  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( B  /  n ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) C  +  ( R  x.  ( ( log `  T )  +  1 ) ) ) )
Distinct variable groups:    A, n    ph, n    R, n    T, n
Allowed substitution hints:    B( n)    C( n)

Proof of Theorem fsumharmonic
StepHypRef Expression
1 fzfid 11312 . . . 4  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  e.  Fin )
2 fsumharmonic.b . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  B  e.  CC )
3 elfznn 11080 . . . . . . 7  |-  ( n  e.  ( 1 ... ( |_ `  A
) )  ->  n  e.  NN )
43adantl 453 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  NN )
54nncnd 10016 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  CC )
64nnne0d 10044 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  =/=  0 )
72, 5, 6divcld 9790 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( B  /  n )  e.  CC )
81, 7fsumcl 12527 . . 3  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( B  /  n )  e.  CC )
98abscld 12238 . 2  |-  ( ph  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( B  /  n ) )  e.  RR )
102abscld 12238 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( abs `  B )  e.  RR )
1110, 4nndivred 10048 . . 3  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  /  n )  e.  RR )
121, 11fsumrecl 12528 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( abs `  B
)  /  n )  e.  RR )
13 fsumharmonic.c . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  C  e.  RR )
141, 13fsumrecl 12528 . . 3  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) C  e.  RR )
15 fsumharmonic.r . . . . 5  |-  ( ph  ->  ( R  e.  RR  /\  0  <_  R )
)
1615simpld 446 . . . 4  |-  ( ph  ->  R  e.  RR )
17 fsumharmonic.t . . . . . . . 8  |-  ( ph  ->  ( T  e.  RR  /\  1  <_  T )
)
1817simpld 446 . . . . . . 7  |-  ( ph  ->  T  e.  RR )
19 0re 9091 . . . . . . . . 9  |-  0  e.  RR
2019a1i 11 . . . . . . . 8  |-  ( ph  ->  0  e.  RR )
21 1re 9090 . . . . . . . . 9  |-  1  e.  RR
2221a1i 11 . . . . . . . 8  |-  ( ph  ->  1  e.  RR )
23 0lt1 9550 . . . . . . . . 9  |-  0  <  1
2423a1i 11 . . . . . . . 8  |-  ( ph  ->  0  <  1 )
2517simprd 450 . . . . . . . 8  |-  ( ph  ->  1  <_  T )
2620, 22, 18, 24, 25ltletrd 9230 . . . . . . 7  |-  ( ph  ->  0  <  T )
2718, 26elrpd 10646 . . . . . 6  |-  ( ph  ->  T  e.  RR+ )
2827relogcld 20518 . . . . 5  |-  ( ph  ->  ( log `  T
)  e.  RR )
2928, 22readdcld 9115 . . . 4  |-  ( ph  ->  ( ( log `  T
)  +  1 )  e.  RR )
3016, 29remulcld 9116 . . 3  |-  ( ph  ->  ( R  x.  (
( log `  T
)  +  1 ) )  e.  RR )
3114, 30readdcld 9115 . 2  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) C  +  ( R  x.  ( ( log `  T )  +  1 ) ) )  e.  RR )
321, 7fsumabs 12580 . . 3  |-  ( ph  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( B  /  n ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( abs `  ( B  /  n ) ) )
332, 5, 6absdivd 12257 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( abs `  ( B  /  n
) )  =  ( ( abs `  B
)  /  ( abs `  n ) ) )
344nnrpd 10647 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
3534rprege0d 10655 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( n  e.  RR  /\  0  <_  n ) )
36 absid 12101 . . . . . . 7  |-  ( ( n  e.  RR  /\  0  <_  n )  -> 
( abs `  n
)  =  n )
3735, 36syl 16 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( abs `  n )  =  n )
3837oveq2d 6097 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  / 
( abs `  n
) )  =  ( ( abs `  B
)  /  n ) )
3933, 38eqtrd 2468 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( abs `  ( B  /  n
) )  =  ( ( abs `  B
)  /  n ) )
4039sumeq2dv 12497 . . 3  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( abs `  ( B  /  n ) )  =  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( abs `  B
)  /  n ) )
4132, 40breqtrd 4236 . 2  |-  ( ph  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( B  /  n ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( ( abs `  B
)  /  n ) )
42 fsumharmonic.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  RR+ )
4342, 27rpdivcld 10665 . . . . . . . . 9  |-  ( ph  ->  ( A  /  T
)  e.  RR+ )
4443rprege0d 10655 . . . . . . . 8  |-  ( ph  ->  ( ( A  /  T )  e.  RR  /\  0  <_  ( A  /  T ) ) )
45 flge0nn0 11225 . . . . . . . 8  |-  ( ( ( A  /  T
)  e.  RR  /\  0  <_  ( A  /  T ) )  -> 
( |_ `  ( A  /  T ) )  e.  NN0 )
4644, 45syl 16 . . . . . . 7  |-  ( ph  ->  ( |_ `  ( A  /  T ) )  e.  NN0 )
4746nn0red 10275 . . . . . 6  |-  ( ph  ->  ( |_ `  ( A  /  T ) )  e.  RR )
4847ltp1d 9941 . . . . 5  |-  ( ph  ->  ( |_ `  ( A  /  T ) )  <  ( ( |_
`  ( A  /  T ) )  +  1 ) )
49 fzdisj 11078 . . . . 5  |-  ( ( |_ `  ( A  /  T ) )  <  ( ( |_
`  ( A  /  T ) )  +  1 )  ->  (
( 1 ... ( |_ `  ( A  /  T ) ) )  i^i  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) )  =  (/) )
5048, 49syl 16 . . . 4  |-  ( ph  ->  ( ( 1 ... ( |_ `  ( A  /  T ) ) )  i^i  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) )  =  (/) )
51 nn0p1nn 10259 . . . . . . 7  |-  ( ( |_ `  ( A  /  T ) )  e.  NN0  ->  ( ( |_ `  ( A  /  T ) )  +  1 )  e.  NN )
5246, 51syl 16 . . . . . 6  |-  ( ph  ->  ( ( |_ `  ( A  /  T
) )  +  1 )  e.  NN )
53 nnuz 10521 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
5452, 53syl6eleq 2526 . . . . 5  |-  ( ph  ->  ( ( |_ `  ( A  /  T
) )  +  1 )  e.  ( ZZ>= ` 
1 ) )
5543rpred 10648 . . . . . 6  |-  ( ph  ->  ( A  /  T
)  e.  RR )
5642rpred 10648 . . . . . 6  |-  ( ph  ->  A  e.  RR )
5718, 26jca 519 . . . . . . . . 9  |-  ( ph  ->  ( T  e.  RR  /\  0  <  T ) )
5842rpregt0d 10654 . . . . . . . . 9  |-  ( ph  ->  ( A  e.  RR  /\  0  <  A ) )
59 lediv2 9900 . . . . . . . . 9  |-  ( ( ( 1  e.  RR  /\  0  <  1 )  /\  ( T  e.  RR  /\  0  < 
T )  /\  ( A  e.  RR  /\  0  <  A ) )  -> 
( 1  <_  T  <->  ( A  /  T )  <_  ( A  / 
1 ) ) )
6022, 24, 57, 58, 59syl211anc 1190 . . . . . . . 8  |-  ( ph  ->  ( 1  <_  T  <->  ( A  /  T )  <_  ( A  / 
1 ) ) )
6125, 60mpbid 202 . . . . . . 7  |-  ( ph  ->  ( A  /  T
)  <_  ( A  /  1 ) )
6256recnd 9114 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
6362div1d 9782 . . . . . . 7  |-  ( ph  ->  ( A  /  1
)  =  A )
6461, 63breqtrd 4236 . . . . . 6  |-  ( ph  ->  ( A  /  T
)  <_  A )
65 flword2 11220 . . . . . 6  |-  ( ( ( A  /  T
)  e.  RR  /\  A  e.  RR  /\  ( A  /  T )  <_  A )  ->  ( |_ `  A )  e.  ( ZZ>= `  ( |_ `  ( A  /  T
) ) ) )
6655, 56, 64, 65syl3anc 1184 . . . . 5  |-  ( ph  ->  ( |_ `  A
)  e.  ( ZZ>= `  ( |_ `  ( A  /  T ) ) ) )
67 fzsplit2 11076 . . . . 5  |-  ( ( ( ( |_ `  ( A  /  T
) )  +  1 )  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ( ZZ>= `  ( |_ `  ( A  /  T
) ) ) )  ->  ( 1 ... ( |_ `  A
) )  =  ( ( 1 ... ( |_ `  ( A  /  T ) ) )  u.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ) )
6854, 66, 67syl2anc 643 . . . 4  |-  ( ph  ->  ( 1 ... ( |_ `  A ) )  =  ( ( 1 ... ( |_ `  ( A  /  T
) ) )  u.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) ) )
6911recnd 9114 . . . 4  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  /  n )  e.  CC )
7050, 68, 1, 69fsumsplit 12533 . . 3  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( abs `  B
)  /  n )  =  ( sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( ( abs `  B
)  /  n )  +  sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n ) ) )
71 fzfid 11312 . . . . 5  |-  ( ph  ->  ( 1 ... ( |_ `  ( A  /  T ) ) )  e.  Fin )
72 ssun1 3510 . . . . . . . 8  |-  ( 1 ... ( |_ `  ( A  /  T
) ) )  C_  ( ( 1 ... ( |_ `  ( A  /  T ) ) )  u.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) )
7372, 68syl5sseqr 3397 . . . . . . 7  |-  ( ph  ->  ( 1 ... ( |_ `  ( A  /  T ) ) ) 
C_  ( 1 ... ( |_ `  A
) ) )
7473sselda 3348 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  n  e.  ( 1 ... ( |_ `  A ) ) )
7574, 11syldan 457 . . . . 5  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( ( abs `  B )  /  n )  e.  RR )
7671, 75fsumrecl 12528 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) ( ( abs `  B
)  /  n )  e.  RR )
77 fzfid 11312 . . . . 5  |-  ( ph  ->  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) )  e.  Fin )
78 ssun2 3511 . . . . . . . 8  |-  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) )  C_  (
( 1 ... ( |_ `  ( A  /  T ) ) )  u.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) )
7978, 68syl5sseqr 3397 . . . . . . 7  |-  ( ph  ->  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) 
C_  ( 1 ... ( |_ `  A
) ) )
8079sselda 3348 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  n  e.  ( 1 ... ( |_ `  A ) ) )
8180, 11syldan 457 . . . . 5  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  /  n )  e.  RR )
8277, 81fsumrecl 12528 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n )  e.  RR )
8374, 13syldan 457 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  C  e.  RR )
8471, 83fsumrecl 12528 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) C  e.  RR )
85 fznnfl 11243 . . . . . . . . . . 11  |-  ( ( A  /  T )  e.  RR  ->  (
n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) )  <->  ( n  e.  NN  /\  n  <_ 
( A  /  T
) ) ) )
8655, 85syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) )  <-> 
( n  e.  NN  /\  n  <_  ( A  /  T ) ) ) )
8786simplbda 608 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  n  <_  ( A  /  T ) )
8834rpred 10648 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  n  e.  RR )
8956adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
9057adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( T  e.  RR  /\  0  < 
T ) )
91 lemuldiv2 9890 . . . . . . . . . . . 12  |-  ( ( n  e.  RR  /\  A  e.  RR  /\  ( T  e.  RR  /\  0  <  T ) )  -> 
( ( T  x.  n )  <_  A  <->  n  <_  ( A  /  T ) ) )
9288, 89, 90, 91syl3anc 1184 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( T  x.  n )  <_  A  <->  n  <_  ( A  /  T ) ) )
9318adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  T  e.  RR )
9493, 89, 34lemuldivd 10693 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( T  x.  n )  <_  A  <->  T  <_  ( A  /  n ) ) )
9592, 94bitr3d 247 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( n  <_  ( A  /  T
)  <->  T  <_  ( A  /  n ) ) )
9674, 95syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( n  <_  ( A  /  T
)  <->  T  <_  ( A  /  n ) ) )
9787, 96mpbid 202 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  T  <_  ( A  /  n ) )
98 fsumharmonic.1 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  T  <_ 
( A  /  n
) )  ->  ( abs `  B )  <_ 
( C  x.  n
) )
9998ex 424 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( T  <_  ( A  /  n
)  ->  ( abs `  B )  <_  ( C  x.  n )
) )
10074, 99syldan 457 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( T  <_  ( A  /  n
)  ->  ( abs `  B )  <_  ( C  x.  n )
) )
10197, 100mpd 15 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( abs `  B )  <_  ( C  x.  n )
)
10274, 2syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  B  e.  CC )
103102abscld 12238 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( abs `  B )  e.  RR )
10474, 3syl 16 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  n  e.  NN )
105104nnrpd 10647 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  n  e.  RR+ )
106103, 83, 105ledivmul2d 10698 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( (
( abs `  B
)  /  n )  <_  C  <->  ( abs `  B )  <_  ( C  x.  n )
) )
107101, 106mpbird 224 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( ( abs `  B )  /  n )  <_  C
)
10871, 75, 83, 107fsumle 12578 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) ( ( abs `  B
)  /  n )  <_  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) C )
109 fsumharmonic.0 . . . . . 6  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <_  C )
1101, 13, 109, 73fsumless 12575 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) C  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) ) C )
11176, 84, 14, 108, 110letrd 9227 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) ( ( abs `  B
)  /  n )  <_  sum_ n  e.  ( 1 ... ( |_
`  A ) ) C )
11280, 3syl 16 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  n  e.  NN )
113112nnrecred 10045 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( 1  /  n )  e.  RR )
11477, 113fsumrecl 12528 . . . . . 6  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
)  e.  RR )
11516, 114remulcld 9116 . . . . 5  |-  ( ph  ->  ( R  x.  sum_ n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n ) )  e.  RR )
11616adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  R  e.  RR )
117116recnd 9114 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  R  e.  CC )
118112nncnd 10016 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  n  e.  CC )
119112nnne0d 10044 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  n  =/=  0 )
120117, 118, 119divrecd 9793 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( R  /  n )  =  ( R  x.  ( 1  /  n ) ) )
121116, 112nndivred 10048 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( R  /  n )  e.  RR )
122120, 121eqeltrrd 2511 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( R  x.  ( 1  /  n
) )  e.  RR )
12380, 10syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( abs `  B )  e.  RR )
12480, 34syldan 457 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  n  e.  RR+ )
125 noel 3632 . . . . . . . . . . . . . . . 16  |-  -.  n  e.  (/)
126 elin 3530 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ( 1 ... ( |_ `  ( A  /  T
) ) )  i^i  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  <->  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  /\  n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ) )
12750eleq2d 2503 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( n  e.  ( ( 1 ... ( |_ `  ( A  /  T ) ) )  i^i  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) )  <->  n  e.  (/) ) )
128126, 127syl5bbr 251 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  /\  n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) )  <->  n  e.  (/) ) )
129125, 128mtbiri 295 . . . . . . . . . . . . . . 15  |-  ( ph  ->  -.  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  /\  n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ) )
130 imnan 412 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) )  ->  -.  n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) )  <->  -.  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  /\  n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ) )
131129, 130sylibr 204 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) )  ->  -.  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) ) )
132131con2d 109 . . . . . . . . . . . . 13  |-  ( ph  ->  ( n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) )  ->  -.  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ) )
133132imp 419 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  -.  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )
13485baibd 876 . . . . . . . . . . . . . . 15  |-  ( ( ( A  /  T
)  e.  RR  /\  n  e.  NN )  ->  ( n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) )  <-> 
n  <_  ( A  /  T ) ) )
13555, 3, 134syl2an 464 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  <-> 
n  <_  ( A  /  T ) ) )
136135, 95bitrd 245 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  <-> 
T  <_  ( A  /  n ) ) )
13780, 136syldan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) )  <-> 
T  <_  ( A  /  n ) ) )
138133, 137mtbid 292 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  -.  T  <_  ( A  /  n
) )
13956adantr 452 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  A  e.  RR )
140139, 112nndivred 10048 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( A  /  n )  e.  RR )
14118adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  T  e.  RR )
142140, 141ltnled 9220 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( ( A  /  n )  < 
T  <->  -.  T  <_  ( A  /  n ) ) )
143138, 142mpbird 224 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( A  /  n )  <  T
)
144 fsumharmonic.2 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  /\  ( A  /  n )  < 
T )  ->  ( abs `  B )  <_  R )
145144ex 424 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( ( A  /  n )  < 
T  ->  ( abs `  B )  <_  R
) )
14680, 145syldan 457 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( ( A  /  n )  < 
T  ->  ( abs `  B )  <_  R
) )
147143, 146mpd 15 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( abs `  B )  <_  R
)
148123, 116, 124, 147lediv1dd 10702 . . . . . . . 8  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  /  n )  <_  ( R  /  n ) )
149148, 120breqtrd 4236 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( ( abs `  B )  /  n )  <_  ( R  x.  ( 1  /  n ) ) )
15077, 81, 122, 149fsumle 12578 . . . . . 6  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n )  <_  sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( R  x.  (
1  /  n ) ) )
15116recnd 9114 . . . . . . 7  |-  ( ph  ->  R  e.  CC )
152113recnd 9114 . . . . . . 7  |-  ( (
ph  /\  n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) )  ->  ( 1  /  n )  e.  CC )
15377, 151, 152fsummulc2 12567 . . . . . 6  |-  ( ph  ->  ( R  x.  sum_ n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n ) )  =  sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( R  x.  (
1  /  n ) ) )
154150, 153breqtrrd 4238 . . . . 5  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n )  <_  ( R  x.  sum_
n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n ) ) )
1554nnrecred 10045 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  n )  e.  RR )
156155recnd 9114 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  /  n )  e.  CC )
15750, 68, 1, 156fsumsplit 12533 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( 1  /  n )  =  ( sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) ( 1  /  n
) ) )
158157oveq1d 6096 . . . . . . . 8  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )  =  ( ( sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) ( 1  /  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n ) ) )
159104nnrecred 10045 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( 1  /  n )  e.  RR )
16071, 159fsumrecl 12528 . . . . . . . . . 10  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n )  e.  RR )
161160recnd 9114 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n )  e.  CC )
162114recnd 9114 . . . . . . . . 9  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
)  e.  CC )
163161, 162pncan2d 9413 . . . . . . . 8  |-  ( ph  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
)  +  sum_ n  e.  ( ( ( |_
`  ( A  /  T ) )  +  1 ) ... ( |_ `  A ) ) ( 1  /  n
) )  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n ) )  = 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
) )
164158, 163eqtrd 2468 . . . . . . 7  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )  =  sum_ n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n ) )
1651, 155fsumrecl 12528 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( 1  /  n )  e.  RR )
166165adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  1 )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n
)  e.  RR )
167160adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  1 )  ->  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
)  e.  RR )
168166, 167resubcld 9465 . . . . . . . . 9  |-  ( (
ph  /\  A  <  1 )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  e.  RR )
16919a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  A  <  1 )  ->  0  e.  RR )
17029adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  A  <  1 )  ->  (
( log `  T
)  +  1 )  e.  RR )
171 fzfid 11312 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  1 )  ->  (
1 ... ( |_ `  ( A  /  T
) ) )  e. 
Fin )
172105adantlr 696 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  <  1 )  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  n  e.  RR+ )
173172rpreccld 10658 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  <  1 )  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( 1  /  n )  e.  RR+ )
174173rpred 10648 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  <  1 )  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  ( 1  /  n )  e.  RR )
175173rpge0d 10652 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  <  1 )  /\  n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) )  ->  0  <_  ( 1  /  n ) )
17642adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A  <  1 )  ->  A  e.  RR+ )
177176rpge0d 10652 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  <  1 )  ->  0  <_  A )
178 simpr 448 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A  <  1 )  ->  A  <  1 )
179 0p1e1 10093 . . . . . . . . . . . . . . . 16  |-  ( 0  +  1 )  =  1
180178, 179syl6breqr 4252 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  <  1 )  ->  A  <  ( 0  +  1 ) )
18156adantr 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  A  <  1 )  ->  A  e.  RR )
182 0z 10293 . . . . . . . . . . . . . . . 16  |-  0  e.  ZZ
183 flbi 11223 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  0  e.  ZZ )  ->  ( ( |_ `  A )  =  0  <-> 
( 0  <_  A  /\  A  <  ( 0  +  1 ) ) ) )
184181, 182, 183sylancl 644 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  A  <  1 )  ->  (
( |_ `  A
)  =  0  <->  (
0  <_  A  /\  A  <  ( 0  +  1 ) ) ) )
185177, 180, 184mpbir2and 889 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  <  1 )  ->  ( |_ `  A )  =  0 )
186185oveq2d 6097 . . . . . . . . . . . . 13  |-  ( (
ph  /\  A  <  1 )  ->  (
1 ... ( |_ `  A ) )  =  ( 1 ... 0
) )
187 fz10 11075 . . . . . . . . . . . . 13  |-  ( 1 ... 0 )  =  (/)
188186, 187syl6eq 2484 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  <  1 )  ->  (
1 ... ( |_ `  A ) )  =  (/) )
189 0ss 3656 . . . . . . . . . . . 12  |-  (/)  C_  (
1 ... ( |_ `  ( A  /  T
) ) )
190188, 189syl6eqss 3398 . . . . . . . . . . 11  |-  ( (
ph  /\  A  <  1 )  ->  (
1 ... ( |_ `  A ) )  C_  ( 1 ... ( |_ `  ( A  /  T ) ) ) )
191171, 174, 175, 190fsumless 12575 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  1 )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n
)  <_  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )
192166, 167suble0d 9617 . . . . . . . . . 10  |-  ( (
ph  /\  A  <  1 )  ->  (
( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )  <_  0  <->  sum_
n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  <_  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) ) )
193191, 192mpbird 224 . . . . . . . . 9  |-  ( (
ph  /\  A  <  1 )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  <_  0
)
19418, 25logge0d 20525 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  ( log `  T ) )
195 0le1 9551 . . . . . . . . . . . 12  |-  0  <_  1
196195a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  0  <_  1 )
19728, 22, 194, 196addge0d 9602 . . . . . . . . . 10  |-  ( ph  ->  0  <_  ( ( log `  T )  +  1 ) )
198197adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  A  <  1 )  ->  0  <_  ( ( log `  T
)  +  1 ) )
199168, 169, 170, 193, 198letrd 9227 . . . . . . . 8  |-  ( (
ph  /\  A  <  1 )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  <_  (
( log `  T
)  +  1 ) )
200 harmonicubnd 20848 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  <_  ( ( log `  A )  +  1 ) )
20156, 200sylan 458 . . . . . . . . . 10  |-  ( (
ph  /\  1  <_  A )  ->  sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n
)  <_  ( ( log `  A )  +  1 ) )
202 harmoniclbnd 20847 . . . . . . . . . . . 12  |-  ( ( A  /  T )  e.  RR+  ->  ( log `  ( A  /  T
) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )
20343, 202syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( log `  ( A  /  T ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )
204203adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  1  <_  A )  ->  ( log `  ( A  /  T
) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )
20542relogcld 20518 . . . . . . . . . . . . 13  |-  ( ph  ->  ( log `  A
)  e.  RR )
206 peano2re 9239 . . . . . . . . . . . . 13  |-  ( ( log `  A )  e.  RR  ->  (
( log `  A
)  +  1 )  e.  RR )
207205, 206syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( log `  A
)  +  1 )  e.  RR )
20843relogcld 20518 . . . . . . . . . . . 12  |-  ( ph  ->  ( log `  ( A  /  T ) )  e.  RR )
209 le2sub 9527 . . . . . . . . . . . 12  |-  ( ( ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  n
)  e.  RR  /\  sum_
n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n )  e.  RR )  /\  ( ( ( log `  A )  +  1 )  e.  RR  /\  ( log `  ( A  /  T ) )  e.  RR ) )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  n )  <_ 
( ( log `  A
)  +  1 )  /\  ( log `  ( A  /  T ) )  <_  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  <_  (
( ( log `  A
)  +  1 )  -  ( log `  ( A  /  T ) ) ) ) )
210165, 160, 207, 208, 209syl22anc 1185 . . . . . . . . . . 11  |-  ( ph  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n
)  <_  ( ( log `  A )  +  1 )  /\  ( log `  ( A  /  T ) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n ) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n ) )  <_  ( (
( log `  A
)  +  1 )  -  ( log `  ( A  /  T ) ) ) ) )
211210adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  1  <_  A )  ->  ( ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  <_  ( ( log `  A )  +  1 )  /\  ( log `  ( A  /  T
) )  <_  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( 1  /  n
) )  <_  (
( ( log `  A
)  +  1 )  -  ( log `  ( A  /  T ) ) ) ) )
212201, 204, 211mp2and 661 . . . . . . . . 9  |-  ( (
ph  /\  1  <_  A )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n ) )  <_  ( (
( log `  A
)  +  1 )  -  ( log `  ( A  /  T ) ) ) )
213205recnd 9114 . . . . . . . . . . . 12  |-  ( ph  ->  ( log `  A
)  e.  CC )
21422recnd 9114 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  CC )
21528recnd 9114 . . . . . . . . . . . 12  |-  ( ph  ->  ( log `  T
)  e.  CC )
216213, 214, 215pnncand 9450 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( log `  A )  +  1 )  -  ( ( log `  A )  -  ( log `  T
) ) )  =  ( 1  +  ( log `  T ) ) )
21742, 27relogdivd 20521 . . . . . . . . . . . 12  |-  ( ph  ->  ( log `  ( A  /  T ) )  =  ( ( log `  A )  -  ( log `  T ) ) )
218217oveq2d 6097 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( log `  A )  +  1 )  -  ( log `  ( A  /  T
) ) )  =  ( ( ( log `  A )  +  1 )  -  ( ( log `  A )  -  ( log `  T
) ) ) )
219 ax-1cn 9048 . . . . . . . . . . . 12  |-  1  e.  CC
220 addcom 9252 . . . . . . . . . . . 12  |-  ( ( ( log `  T
)  e.  CC  /\  1  e.  CC )  ->  ( ( log `  T
)  +  1 )  =  ( 1  +  ( log `  T
) ) )
221215, 219, 220sylancl 644 . . . . . . . . . . 11  |-  ( ph  ->  ( ( log `  T
)  +  1 )  =  ( 1  +  ( log `  T
) ) )
222216, 218, 2213eqtr4d 2478 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( log `  A )  +  1 )  -  ( log `  ( A  /  T
) ) )  =  ( ( log `  T
)  +  1 ) )
223222adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  1  <_  A )  ->  ( (
( log `  A
)  +  1 )  -  ( log `  ( A  /  T ) ) )  =  ( ( log `  T )  +  1 ) )
224212, 223breqtrd 4236 . . . . . . . 8  |-  ( (
ph  /\  1  <_  A )  ->  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( 1  /  n )  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T
) ) ) ( 1  /  n ) )  <_  ( ( log `  T )  +  1 ) )
225199, 224, 56, 22ltlecasei 9181 . . . . . . 7  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  A ) ) ( 1  /  n
)  -  sum_ n  e.  ( 1 ... ( |_ `  ( A  /  T ) ) ) ( 1  /  n
) )  <_  (
( log `  T
)  +  1 ) )
226164, 225eqbrtrrd 4234 . . . . . 6  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
)  <_  ( ( log `  T )  +  1 ) )
227 lemul2a 9865 . . . . . 6  |-  ( ( ( sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
)  e.  RR  /\  ( ( log `  T
)  +  1 )  e.  RR  /\  ( R  e.  RR  /\  0  <_  R ) )  /\  sum_
n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n )  <_ 
( ( log `  T
)  +  1 ) )  ->  ( R  x.  sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( 1  /  n
) )  <_  ( R  x.  ( ( log `  T )  +  1 ) ) )
228114, 29, 15, 226, 227syl31anc 1187 . . . . 5  |-  ( ph  ->  ( R  x.  sum_ n  e.  ( ( ( |_ `  ( A  /  T ) )  +  1 ) ... ( |_ `  A
) ) ( 1  /  n ) )  <_  ( R  x.  ( ( log `  T
)  +  1 ) ) )
22982, 115, 30, 154, 228letrd 9227 . . . 4  |-  ( ph  -> 
sum_ n  e.  (
( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n )  <_  ( R  x.  ( ( log `  T
)  +  1 ) ) )
23076, 82, 14, 30, 111, 229le2addd 9644 . . 3  |-  ( ph  ->  ( sum_ n  e.  ( 1 ... ( |_
`  ( A  /  T ) ) ) ( ( abs `  B
)  /  n )  +  sum_ n  e.  ( ( ( |_ `  ( A  /  T
) )  +  1 ) ... ( |_
`  A ) ) ( ( abs `  B
)  /  n ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  A
) ) C  +  ( R  x.  (
( log `  T
)  +  1 ) ) ) )
23170, 230eqbrtrd 4232 . 2  |-  ( ph  -> 
sum_ n  e.  (
1 ... ( |_ `  A ) ) ( ( abs `  B
)  /  n )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) C  +  ( R  x.  ( ( log `  T )  +  1 ) ) ) )
2329, 12, 31, 41, 231letrd 9227 1  |-  ( ph  ->  ( abs `  sum_ n  e.  ( 1 ... ( |_ `  A
) ) ( B  /  n ) )  <_  ( sum_ n  e.  ( 1 ... ( |_ `  A ) ) C  +  ( R  x.  ( ( log `  T )  +  1 ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    u. cun 3318    i^i cin 3319   (/)c0 3628   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991    + caddc 8993    x. cmul 8995    < clt 9120    <_ cle 9121    - cmin 9291    / cdiv 9677   NNcn 10000   NN0cn0 10221   ZZcz 10282   ZZ>=cuz 10488   RR+crp 10612   ...cfz 11043   |_cfl 11201   abscabs 12039   sum_csu 12479   logclog 20452
This theorem is referenced by:  dchrvmasumlem2  21192  mulog2sumlem2  21229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068  ax-addf 9069  ax-mulf 9070
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-of 6305  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-map 7020  df-pm 7021  df-ixp 7064  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-fi 7416  df-sup 7446  df-oi 7479  df-card 7826  df-cda 8048  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-n0 10222  df-z 10283  df-dec 10383  df-uz 10489  df-q 10575  df-rp 10613  df-xneg 10710  df-xadd 10711  df-xmul 10712  df-ioo 10920  df-ioc 10921  df-ico 10922  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-mod 11251  df-seq 11324  df-exp 11383  df-fac 11567  df-bc 11594  df-hash 11619  df-shft 11882  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-limsup 12265  df-clim 12282  df-rlim 12283  df-sum 12480  df-ef 12670  df-e 12671  df-sin 12672  df-cos 12673  df-pi 12675  df-struct 13471  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ress 13476  df-plusg 13542  df-mulr 13543  df-starv 13544  df-sca 13545  df-vsca 13546  df-tset 13548  df-ple 13549  df-ds 13551  df-unif 13552  df-hom 13553  df-cco 13554  df-rest 13650  df-topn 13651  df-topgen 13667  df-pt 13668  df-prds 13671  df-xrs 13726  df-0g 13727  df-gsum 13728  df-qtop 13733  df-imas 13734  df-xps 13736  df-mre 13811  df-mrc 13812  df-acs 13814  df-mnd 14690  df-submnd 14739  df-mulg 14815  df-cntz 15116  df-cmn 15414  df-psmet 16694  df-xmet 16695  df-met 16696  df-bl 16697  df-mopn 16698  df-fbas 16699  df-fg 16700  df-cnfld 16704  df-top 16963  df-bases 16965  df-topon 16966  df-topsp 16967  df-cld 17083  df-ntr 17084  df-cls 17085  df-nei 17162  df-lp 17200  df-perf 17201  df-cn 17291  df-cnp 17292  df-haus 17379  df-tx 17594  df-hmeo 17787  df-fil 17878  df-fm 17970  df-flim 17971  df-flf 17972  df-xms 18350  df-ms 18351  df-tms 18352  df-cncf 18908  df-limc 19753  df-dv 19754  df-log 20454  df-em 20831
  Copyright terms: Public domain W3C validator