MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumiun Unicode version

Theorem fsumiun 12295
Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1  |-  ( ph  ->  A  e.  Fin )
fsumiun.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
fsumiun.3  |-  ( ph  -> Disj  x  e.  A B
)
fsumiun.4  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fsumiun  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
Distinct variable groups:    x, k, A    B, k    ph, k, x    x, C
Allowed substitution hints:    B( x)    C( k)

Proof of Theorem fsumiun
Dummy variables  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3210 . 2  |-  A  C_  A
2 fsumiun.1 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3212 . . . . . 6  |-  ( u  =  (/)  ->  ( u 
C_  A  <->  (/)  C_  A
) )
4 iuneq1 3934 . . . . . . . . 9  |-  ( u  =  (/)  ->  U_ x  e.  u  B  =  U_ x  e.  (/)  B )
5 0iun 3975 . . . . . . . . 9  |-  U_ x  e.  (/)  B  =  (/)
64, 5syl6eq 2344 . . . . . . . 8  |-  ( u  =  (/)  ->  U_ x  e.  u  B  =  (/) )
76sumeq1d 12190 . . . . . . 7  |-  ( u  =  (/)  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  (/)  C )
8 sumeq1 12178 . . . . . . 7  |-  ( u  =  (/)  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C )
97, 8eqeq12d 2310 . . . . . 6  |-  ( u  =  (/)  ->  ( sum_ k  e.  U_  x  e.  u  B C  = 
sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
)
103, 9imbi12d 311 . . . . 5  |-  ( u  =  (/)  ->  ( ( u  C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C
)  <->  ( (/)  C_  A  -> 
sum_ k  e.  (/)  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C
) ) )
1110imbi2d 307 . . . 4  |-  ( u  =  (/)  ->  ( (
ph  ->  ( u  C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C ) )  <->  ( ph  ->  ( (/)  C_  A  ->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
) ) )
12 sseq1 3212 . . . . . 6  |-  ( u  =  z  ->  (
u  C_  A  <->  z  C_  A ) )
13 iuneq1 3934 . . . . . . . 8  |-  ( u  =  z  ->  U_ x  e.  u  B  =  U_ x  e.  z  B )
1413sumeq1d 12190 . . . . . . 7  |-  ( u  =  z  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  U_  x  e.  z  B C )
15 sumeq1 12178 . . . . . . 7  |-  ( u  =  z  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  z  sum_ k  e.  B  C )
1614, 15eqeq12d 2310 . . . . . 6  |-  ( u  =  z  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C ) )
1712, 16imbi12d 311 . . . . 5  |-  ( u  =  z  ->  (
( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( z  C_  A  ->  sum_ k  e. 
U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )
) )
1817imbi2d 307 . . . 4  |-  ( u  =  z  ->  (
( ph  ->  ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )
)  <->  ( ph  ->  ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C ) ) ) )
19 sseq1 3212 . . . . . 6  |-  ( u  =  ( z  u. 
{ w } )  ->  ( u  C_  A 
<->  ( z  u.  {
w } )  C_  A ) )
20 iuneq1 3934 . . . . . . . 8  |-  ( u  =  ( z  u. 
{ w } )  ->  U_ x  e.  u  B  =  U_ x  e.  ( z  u.  {
w } ) B )
2120sumeq1d 12190 . . . . . . 7  |-  ( u  =  ( z  u. 
{ w } )  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e. 
U_  x  e.  ( z  u.  { w } ) B C )
22 sumeq1 12178 . . . . . . 7  |-  ( u  =  ( z  u. 
{ w } )  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
2321, 22eqeq12d 2310 . . . . . 6  |-  ( u  =  ( z  u. 
{ w } )  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e. 
U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
)
2419, 23imbi12d 311 . . . . 5  |-  ( u  =  ( z  u. 
{ w } )  ->  ( ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( ( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
2524imbi2d 307 . . . 4  |-  ( u  =  ( z  u. 
{ w } )  ->  ( ( ph  ->  ( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C ) )  <->  ( ph  ->  ( ( z  u. 
{ w } ) 
C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
) ) )
26 sseq1 3212 . . . . . 6  |-  ( u  =  A  ->  (
u  C_  A  <->  A  C_  A
) )
27 iuneq1 3934 . . . . . . . 8  |-  ( u  =  A  ->  U_ x  e.  u  B  =  U_ x  e.  A  B
)
2827sumeq1d 12190 . . . . . . 7  |-  ( u  =  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  U_  x  e.  A  B C )
29 sumeq1 12178 . . . . . . 7  |-  ( u  =  A  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  A  sum_ k  e.  B  C )
3028, 29eqeq12d 2310 . . . . . 6  |-  ( u  =  A  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C
) )
3126, 30imbi12d 311 . . . . 5  |-  ( u  =  A  ->  (
( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( A  C_  A  ->  sum_ k  e. 
U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
) )
3231imbi2d 307 . . . 4  |-  ( u  =  A  ->  (
( ph  ->  ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )
)  <->  ( ph  ->  ( A  C_  A  ->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C
) ) ) )
33 sum0 12210 . . . . . 6  |-  sum_ k  e.  (/)  C  =  0
34 sum0 12210 . . . . . 6  |-  sum_ x  e.  (/)  sum_ k  e.  B  C  =  0
3533, 34eqtr4i 2319 . . . . 5  |-  sum_ k  e.  (/)  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C
3635a1ii 24 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
)
37 ssun1 3351 . . . . . . . . . 10  |-  z  C_  ( z  u.  {
w } )
38 id 19 . . . . . . . . . 10  |-  ( ( z  u.  { w } )  C_  A  ->  ( z  u.  {
w } )  C_  A )
3937, 38syl5ss 3203 . . . . . . . . 9  |-  ( ( z  u.  { w } )  C_  A  ->  z  C_  A )
4039imim1i 54 . . . . . . . 8  |-  ( ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C ) )
41 oveq1 5881 . . . . . . . . . . 11  |-  ( sum_ k  e.  U_  x  e.  z  B C  = 
sum_ x  e.  z  sum_ k  e.  B  C  ->  ( sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e. 
[_  w  /  x ]_ B C )  =  ( sum_ x  e.  z 
sum_ k  e.  B  C  +  sum_ k  e. 
[_  w  /  x ]_ B C ) )
42 nfcv 2432 . . . . . . . . . . . . . . . . 17  |-  F/_ z B
43 nfcsb1v 3126 . . . . . . . . . . . . . . . . 17  |-  F/_ x [_ z  /  x ]_ B
44 csbeq1a 3102 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
4542, 43, 44cbviun 3955 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  { w } B  =  U_ z  e.  {
w } [_ z  /  x ]_ B
46 vex 2804 . . . . . . . . . . . . . . . . 17  |-  w  e. 
_V
47 csbeq1 3097 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  [_ z  /  x ]_ B  = 
[_ w  /  x ]_ B )
4846, 47iunxsn 3997 . . . . . . . . . . . . . . . 16  |-  U_ z  e.  { w } [_ z  /  x ]_ B  =  [_ w  /  x ]_ B
4945, 48eqtri 2316 . . . . . . . . . . . . . . 15  |-  U_ x  e.  { w } B  =  [_ w  /  x ]_ B
5049ineq2i 3380 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  z  B  i^i  U_ x  e.  {
w } B )  =  ( U_ x  e.  z  B  i^i  [_ w  /  x ]_ B )
51 fsumiun.3 . . . . . . . . . . . . . . . 16  |-  ( ph  -> Disj  x  e.  A B
)
5251ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  -> Disj  x  e.  A B )
5339adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  z  C_  A )
54 ssun2 3352 . . . . . . . . . . . . . . . 16  |-  { w }  C_  ( z  u. 
{ w } )
55 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  u.  { w } )  C_  A
)
5654, 55syl5ss 3203 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  { w }  C_  A )
57 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  -.  w  e.  z )
58 disjsn 3706 . . . . . . . . . . . . . . . 16  |-  ( ( z  i^i  { w } )  =  (/)  <->  -.  w  e.  z )
5957, 58sylibr 203 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  i^i  { w } )  =  (/) )
60 disjiun 4029 . . . . . . . . . . . . . . 15  |-  ( (Disj  x  e.  A B  /\  ( z  C_  A  /\  { w }  C_  A  /\  ( z  i^i 
{ w } )  =  (/) ) )  -> 
( U_ x  e.  z  B  i^i  U_ x  e.  { w } B
)  =  (/) )
6152, 53, 56, 59, 60syl13anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( U_ x  e.  z  B  i^i  U_ x  e.  {
w } B )  =  (/) )
6250, 61syl5eqr 2342 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( U_ x  e.  z  B  i^i  [_ w  /  x ]_ B )  =  (/) )
63 iunxun 3999 . . . . . . . . . . . . . . 15  |-  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  U_ x  e.  { w } B )
6449uneq2i 3339 . . . . . . . . . . . . . . 15  |-  ( U_ x  e.  z  B  u.  U_ x  e.  {
w } B )  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B )
6563, 64eqtri 2316 . . . . . . . . . . . . . 14  |-  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B )
6665a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B ) )
672ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A  e.  Fin )
68 ssfi 7099 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  Fin  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  u.  { w } )  e.  Fin )
6967, 55, 68syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  u.  { w } )  e.  Fin )
70 fsumiun.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
7170ralrimiva 2639 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  A  B  e.  Fin )
7271ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  A  B  e.  Fin )
73 ssralv 3250 . . . . . . . . . . . . . . 15  |-  ( ( z  u.  { w } )  C_  A  ->  ( A. x  e.  A  B  e.  Fin  ->  A. x  e.  ( z  u.  { w } ) B  e. 
Fin ) )
7455, 72, 73sylc 56 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  ( z  u.  {
w } ) B  e.  Fin )
75 iunfi 7160 . . . . . . . . . . . . . 14  |-  ( ( ( z  u.  {
w } )  e. 
Fin  /\  A. x  e.  ( z  u.  {
w } ) B  e.  Fin )  ->  U_ x  e.  (
z  u.  { w } ) B  e. 
Fin )
7669, 74, 75syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  U_ x  e.  ( z  u.  {
w } ) B  e.  Fin )
77 iunss1 3932 . . . . . . . . . . . . . . . 16  |-  ( ( z  u.  { w } )  C_  A  ->  U_ x  e.  ( z  u.  { w } ) B  C_  U_ x  e.  A  B
)
7877adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  U_ x  e.  ( z  u.  {
w } ) B 
C_  U_ x  e.  A  B )
7978sselda 3193 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  k  e.  U_ x  e.  ( z  u.  {
w } ) B )  ->  k  e.  U_ x  e.  A  B
)
80 eliun 3925 . . . . . . . . . . . . . . . 16  |-  ( k  e.  U_ x  e.  A  B  <->  E. x  e.  A  k  e.  B )
81 fsumiun.4 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
8281anassrs 629 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
8382ex 423 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  (
k  e.  B  ->  C  e.  CC )
)
8483rexlimdva 2680 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E. x  e.  A  k  e.  B  ->  C  e.  CC ) )
8584ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( E. x  e.  A  k  e.  B  ->  C  e.  CC ) )
8680, 85syl5bi 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
k  e.  U_ x  e.  A  B  ->  C  e.  CC ) )
8786imp 418 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  k  e.  U_ x  e.  A  B )  ->  C  e.  CC )
8879, 87syldan 456 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  k  e.  U_ x  e.  ( z  u.  {
w } ) B )  ->  C  e.  CC )
8962, 66, 76, 88fsumsplit 12228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  ( sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
90 eqidd 2297 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  u.  { w } )  =  ( z  u.  { w } ) )
9155sselda 3193 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  x  e.  ( z  u.  { w } ) )  ->  x  e.  A )
9270, 82fsumcl 12222 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  sum_ k  e.  B  C  e.  CC )
9392ralrimiva 2639 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x  e.  A  sum_ k  e.  B  C  e.  CC )
9493ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  A  sum_ k  e.  B  C  e.  CC )
9594r19.21bi 2654 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  x  e.  A )  -> 
sum_ k  e.  B  C  e.  CC )
9691, 95syldan 456 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  x  e.  ( z  u.  { w } ) )  ->  sum_ k  e.  B  C  e.  CC )
9759, 90, 69, 96fsumsplit 12228 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ x  e.  { w } sum_ k  e.  B  C
) )
98 nfcv 2432 . . . . . . . . . . . . . . . 16  |-  F/_ z sum_ k  e.  B  C
99 nfcv 2432 . . . . . . . . . . . . . . . . 17  |-  F/_ x C
10043, 99nfsum 12180 . . . . . . . . . . . . . . . 16  |-  F/_ x sum_ k  e.  [_  z  /  x ]_ B C
10144sumeq1d 12190 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  sum_ k  e.  B  C  =  sum_ k  e.  [_  z  /  x ]_ B C )
10298, 100, 101cbvsumi 12186 . . . . . . . . . . . . . . 15  |-  sum_ x  e.  { w } sum_ k  e.  B  C  =  sum_ z  e.  {
w } sum_ k  e.  [_  z  /  x ]_ B C
10346snss 3761 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  A  <->  { w }  C_  A )
10456, 103sylibr 203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  w  e.  A )
105 nfcsb1v 3126 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x [_ w  /  x ]_ B
106105, 99nfsum 12180 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x sum_ k  e.  [_  w  /  x ]_ B C
107106nfel1 2442 . . . . . . . . . . . . . . . . . 18  |-  F/ x sum_ k  e.  [_  w  /  x ]_ B C  e.  CC
108 csbeq1a 3102 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
109108sumeq1d 12190 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  sum_ k  e.  B  C  =  sum_ k  e.  [_  w  /  x ]_ B C )
110109eleq1d 2362 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  ( sum_ k  e.  B  C  e.  CC  <->  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )
)
111107, 110rspc 2891 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  A  ->  ( A. x  e.  A  sum_ k  e.  B  C  e.  CC  ->  sum_ k  e. 
[_  w  /  x ]_ B C  e.  CC ) )
112104, 94, 111sylc 56 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )
11347sumeq1d 12190 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  sum_ k  e.  [_  z  /  x ]_ B C  =  sum_ k  e.  [_  w  /  x ]_ B C )
114113sumsn 12229 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  _V  /\  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )  ->  sum_ z  e.  { w } sum_ k  e.  [_  z  /  x ]_ B C  =  sum_ k  e. 
[_  w  /  x ]_ B C )
11546, 112, 114sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ z  e.  { w } sum_ k  e.  [_  z  /  x ]_ B C  = 
sum_ k  e.  [_  w  /  x ]_ B C )
116102, 115syl5eq 2340 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ x  e.  { w } sum_ k  e.  B  C  =  sum_ k  e.  [_  w  /  x ]_ B C )
117116oveq2d 5890 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ x  e.  {
w } sum_ k  e.  B  C )  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
11897, 117eqtrd 2328 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
11989, 118eqeq12d 2310 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( sum_ k  e.  U_  x  e.  ( z  u.  {
w } ) B C  =  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  <->  (
sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e. 
[_  w  /  x ]_ B C )  =  ( sum_ x  e.  z 
sum_ k  e.  B  C  +  sum_ k  e. 
[_  w  /  x ]_ B C ) ) )
12041, 119syl5ibr 212 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) )
121120ex 423 . . . . . . . . 9  |-  ( (
ph  /\  -.  w  e.  z )  ->  (
( z  u.  {
w } )  C_  A  ->  ( sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C  ->  sum_ k  e.  U_  x  e.  ( z  u.  {
w } ) B C  =  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C
) ) )
122121a2d 23 . . . . . . . 8  |-  ( (
ph  /\  -.  w  e.  z )  ->  (
( ( z  u. 
{ w } ) 
C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )  ->  ( ( z  u. 
{ w } ) 
C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
) )
12340, 122syl5 28 . . . . . . 7  |-  ( (
ph  /\  -.  w  e.  z )  ->  (
( z  C_  A  -> 
sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
124123expcom 424 . . . . . 6  |-  ( -.  w  e.  z  -> 
( ph  ->  ( ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) ) )
125124a2d 23 . . . . 5  |-  ( -.  w  e.  z  -> 
( ( ph  ->  ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C ) )  -> 
( ph  ->  ( ( z  u.  { w } )  C_  A  -> 
sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) ) )
126125adantl 452 . . . 4  |-  ( ( z  e.  Fin  /\  -.  w  e.  z
)  ->  ( ( ph  ->  ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C ) )  -> 
( ph  ->  ( ( z  u.  { w } )  C_  A  -> 
sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) ) )
12711, 18, 25, 32, 36, 126findcard2s 7115 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C ) ) )
1282, 127mpcom 32 . 2  |-  ( ph  ->  ( A  C_  A  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C ) )
1291, 128mpi 16 1  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   E.wrex 2557   _Vcvv 2801   [_csb 3094    u. cun 3163    i^i cin 3164    C_ wss 3165   (/)c0 3468   {csn 3653   U_ciun 3921  Disj wdisj 4009  (class class class)co 5874   Fincfn 6879   CCcc 8751   0cc0 8753    + caddc 8756   sum_csu 12174
This theorem is referenced by:  hashiun  12296  fsumiunOLD  12297  incexc2  12313  musum  20447
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-disj 4010  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-sum 12175
  Copyright terms: Public domain W3C validator