MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumiun Unicode version

Theorem fsumiun 12279
Description: Sum over a disjoint indexed union. (Contributed by Mario Carneiro, 1-Jul-2015.) (Revised by Mario Carneiro, 10-Dec-2016.)
Hypotheses
Ref Expression
fsumiun.1  |-  ( ph  ->  A  e.  Fin )
fsumiun.2  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
fsumiun.3  |-  ( ph  -> Disj  x  e.  A B
)
fsumiun.4  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
Assertion
Ref Expression
fsumiun  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
Distinct variable groups:    x, k, A    B, k    ph, k, x    x, C
Allowed substitution hints:    B( x)    C( k)

Proof of Theorem fsumiun
Dummy variables  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssid 3197 . 2  |-  A  C_  A
2 fsumiun.1 . . 3  |-  ( ph  ->  A  e.  Fin )
3 sseq1 3199 . . . . . 6  |-  ( u  =  (/)  ->  ( u 
C_  A  <->  (/)  C_  A
) )
4 iuneq1 3918 . . . . . . . . 9  |-  ( u  =  (/)  ->  U_ x  e.  u  B  =  U_ x  e.  (/)  B )
5 0iun 3959 . . . . . . . . 9  |-  U_ x  e.  (/)  B  =  (/)
64, 5syl6eq 2331 . . . . . . . 8  |-  ( u  =  (/)  ->  U_ x  e.  u  B  =  (/) )
76sumeq1d 12174 . . . . . . 7  |-  ( u  =  (/)  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  (/)  C )
8 sumeq1 12162 . . . . . . 7  |-  ( u  =  (/)  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C )
97, 8eqeq12d 2297 . . . . . 6  |-  ( u  =  (/)  ->  ( sum_ k  e.  U_  x  e.  u  B C  = 
sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
)
103, 9imbi12d 311 . . . . 5  |-  ( u  =  (/)  ->  ( ( u  C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C
)  <->  ( (/)  C_  A  -> 
sum_ k  e.  (/)  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C
) ) )
1110imbi2d 307 . . . 4  |-  ( u  =  (/)  ->  ( (
ph  ->  ( u  C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C ) )  <->  ( ph  ->  ( (/)  C_  A  ->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
) ) )
12 sseq1 3199 . . . . . 6  |-  ( u  =  z  ->  (
u  C_  A  <->  z  C_  A ) )
13 iuneq1 3918 . . . . . . . 8  |-  ( u  =  z  ->  U_ x  e.  u  B  =  U_ x  e.  z  B )
1413sumeq1d 12174 . . . . . . 7  |-  ( u  =  z  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  U_  x  e.  z  B C )
15 sumeq1 12162 . . . . . . 7  |-  ( u  =  z  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  z  sum_ k  e.  B  C )
1614, 15eqeq12d 2297 . . . . . 6  |-  ( u  =  z  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C ) )
1712, 16imbi12d 311 . . . . 5  |-  ( u  =  z  ->  (
( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( z  C_  A  ->  sum_ k  e. 
U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )
) )
1817imbi2d 307 . . . 4  |-  ( u  =  z  ->  (
( ph  ->  ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )
)  <->  ( ph  ->  ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C ) ) ) )
19 sseq1 3199 . . . . . 6  |-  ( u  =  ( z  u. 
{ w } )  ->  ( u  C_  A 
<->  ( z  u.  {
w } )  C_  A ) )
20 iuneq1 3918 . . . . . . . 8  |-  ( u  =  ( z  u. 
{ w } )  ->  U_ x  e.  u  B  =  U_ x  e.  ( z  u.  {
w } ) B )
2120sumeq1d 12174 . . . . . . 7  |-  ( u  =  ( z  u. 
{ w } )  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e. 
U_  x  e.  ( z  u.  { w } ) B C )
22 sumeq1 12162 . . . . . . 7  |-  ( u  =  ( z  u. 
{ w } )  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
2321, 22eqeq12d 2297 . . . . . 6  |-  ( u  =  ( z  u. 
{ w } )  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e. 
U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
)
2419, 23imbi12d 311 . . . . 5  |-  ( u  =  ( z  u. 
{ w } )  ->  ( ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( ( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
2524imbi2d 307 . . . 4  |-  ( u  =  ( z  u. 
{ w } )  ->  ( ( ph  ->  ( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C ) )  <->  ( ph  ->  ( ( z  u. 
{ w } ) 
C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
) ) )
26 sseq1 3199 . . . . . 6  |-  ( u  =  A  ->  (
u  C_  A  <->  A  C_  A
) )
27 iuneq1 3918 . . . . . . . 8  |-  ( u  =  A  ->  U_ x  e.  u  B  =  U_ x  e.  A  B
)
2827sumeq1d 12174 . . . . . . 7  |-  ( u  =  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ k  e.  U_  x  e.  A  B C )
29 sumeq1 12162 . . . . . . 7  |-  ( u  =  A  ->  sum_ x  e.  u  sum_ k  e.  B  C  =  sum_ x  e.  A  sum_ k  e.  B  C )
3028, 29eqeq12d 2297 . . . . . 6  |-  ( u  =  A  ->  ( sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C  <->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C
) )
3126, 30imbi12d 311 . . . . 5  |-  ( u  =  A  ->  (
( u  C_  A  -> 
sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )  <->  ( A  C_  A  ->  sum_ k  e. 
U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
) )
3231imbi2d 307 . . . 4  |-  ( u  =  A  ->  (
( ph  ->  ( u 
C_  A  ->  sum_ k  e.  U_  x  e.  u  B C  =  sum_ x  e.  u  sum_ k  e.  B  C )
)  <->  ( ph  ->  ( A  C_  A  ->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C
) ) ) )
33 sum0 12194 . . . . . 6  |-  sum_ k  e.  (/)  C  =  0
34 sum0 12194 . . . . . 6  |-  sum_ x  e.  (/)  sum_ k  e.  B  C  =  0
3533, 34eqtr4i 2306 . . . . 5  |-  sum_ k  e.  (/)  C  =  sum_ x  e.  (/)  sum_ k  e.  B  C
3635a1ii 24 . . . 4  |-  ( ph  ->  ( (/)  C_  A  ->  sum_ k  e.  (/)  C  = 
sum_ x  e.  (/)  sum_ k  e.  B  C )
)
37 ssun1 3338 . . . . . . . . . 10  |-  z  C_  ( z  u.  {
w } )
38 id 19 . . . . . . . . . 10  |-  ( ( z  u.  { w } )  C_  A  ->  ( z  u.  {
w } )  C_  A )
3937, 38syl5ss 3190 . . . . . . . . 9  |-  ( ( z  u.  { w } )  C_  A  ->  z  C_  A )
4039imim1i 54 . . . . . . . 8  |-  ( ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C ) )
41 oveq1 5865 . . . . . . . . . . 11  |-  ( sum_ k  e.  U_  x  e.  z  B C  = 
sum_ x  e.  z  sum_ k  e.  B  C  ->  ( sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e. 
[_  w  /  x ]_ B C )  =  ( sum_ x  e.  z 
sum_ k  e.  B  C  +  sum_ k  e. 
[_  w  /  x ]_ B C ) )
42 nfcv 2419 . . . . . . . . . . . . . . . . 17  |-  F/_ z B
43 nfcsb1v 3113 . . . . . . . . . . . . . . . . 17  |-  F/_ x [_ z  /  x ]_ B
44 csbeq1a 3089 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  B  =  [_ z  /  x ]_ B )
4542, 43, 44cbviun 3939 . . . . . . . . . . . . . . . 16  |-  U_ x  e.  { w } B  =  U_ z  e.  {
w } [_ z  /  x ]_ B
46 vex 2791 . . . . . . . . . . . . . . . . 17  |-  w  e. 
_V
47 csbeq1 3084 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  [_ z  /  x ]_ B  = 
[_ w  /  x ]_ B )
4846, 47iunxsn 3981 . . . . . . . . . . . . . . . 16  |-  U_ z  e.  { w } [_ z  /  x ]_ B  =  [_ w  /  x ]_ B
4945, 48eqtri 2303 . . . . . . . . . . . . . . 15  |-  U_ x  e.  { w } B  =  [_ w  /  x ]_ B
5049ineq2i 3367 . . . . . . . . . . . . . 14  |-  ( U_ x  e.  z  B  i^i  U_ x  e.  {
w } B )  =  ( U_ x  e.  z  B  i^i  [_ w  /  x ]_ B )
51 fsumiun.3 . . . . . . . . . . . . . . . 16  |-  ( ph  -> Disj  x  e.  A B
)
5251ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  -> Disj  x  e.  A B )
5339adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  z  C_  A )
54 ssun2 3339 . . . . . . . . . . . . . . . 16  |-  { w }  C_  ( z  u. 
{ w } )
55 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  u.  { w } )  C_  A
)
5654, 55syl5ss 3190 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  { w }  C_  A )
57 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  -.  w  e.  z )
58 disjsn 3693 . . . . . . . . . . . . . . . 16  |-  ( ( z  i^i  { w } )  =  (/)  <->  -.  w  e.  z )
5957, 58sylibr 203 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  i^i  { w } )  =  (/) )
60 disjiun 4013 . . . . . . . . . . . . . . 15  |-  ( (Disj  x  e.  A B  /\  ( z  C_  A  /\  { w }  C_  A  /\  ( z  i^i 
{ w } )  =  (/) ) )  -> 
( U_ x  e.  z  B  i^i  U_ x  e.  { w } B
)  =  (/) )
6152, 53, 56, 59, 60syl13anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( U_ x  e.  z  B  i^i  U_ x  e.  {
w } B )  =  (/) )
6250, 61syl5eqr 2329 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( U_ x  e.  z  B  i^i  [_ w  /  x ]_ B )  =  (/) )
63 iunxun 3983 . . . . . . . . . . . . . . 15  |-  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  U_ x  e.  { w } B )
6449uneq2i 3326 . . . . . . . . . . . . . . 15  |-  ( U_ x  e.  z  B  u.  U_ x  e.  {
w } B )  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B )
6563, 64eqtri 2303 . . . . . . . . . . . . . 14  |-  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B )
6665a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  U_ x  e.  ( z  u.  {
w } ) B  =  ( U_ x  e.  z  B  u.  [_ w  /  x ]_ B ) )
672ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A  e.  Fin )
68 ssfi 7083 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  Fin  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  u.  { w } )  e.  Fin )
6967, 55, 68syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  u.  { w } )  e.  Fin )
70 fsumiun.2 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  Fin )
7170ralrimiva 2626 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. x  e.  A  B  e.  Fin )
7271ad2antrr 706 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  A  B  e.  Fin )
73 ssralv 3237 . . . . . . . . . . . . . . 15  |-  ( ( z  u.  { w } )  C_  A  ->  ( A. x  e.  A  B  e.  Fin  ->  A. x  e.  ( z  u.  { w } ) B  e. 
Fin ) )
7455, 72, 73sylc 56 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  ( z  u.  {
w } ) B  e.  Fin )
75 iunfi 7144 . . . . . . . . . . . . . 14  |-  ( ( ( z  u.  {
w } )  e. 
Fin  /\  A. x  e.  ( z  u.  {
w } ) B  e.  Fin )  ->  U_ x  e.  (
z  u.  { w } ) B  e. 
Fin )
7669, 74, 75syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  U_ x  e.  ( z  u.  {
w } ) B  e.  Fin )
77 iunss1 3916 . . . . . . . . . . . . . . . 16  |-  ( ( z  u.  { w } )  C_  A  ->  U_ x  e.  ( z  u.  { w } ) B  C_  U_ x  e.  A  B
)
7877adantl 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  U_ x  e.  ( z  u.  {
w } ) B 
C_  U_ x  e.  A  B )
7978sselda 3180 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  k  e.  U_ x  e.  ( z  u.  {
w } ) B )  ->  k  e.  U_ x  e.  A  B
)
80 eliun 3909 . . . . . . . . . . . . . . . 16  |-  ( k  e.  U_ x  e.  A  B  <->  E. x  e.  A  k  e.  B )
81 fsumiun.4 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( x  e.  A  /\  k  e.  B ) )  ->  C  e.  CC )
8281anassrs 629 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  A )  /\  k  e.  B )  ->  C  e.  CC )
8382ex 423 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  (
k  e.  B  ->  C  e.  CC )
)
8483rexlimdva 2667 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( E. x  e.  A  k  e.  B  ->  C  e.  CC ) )
8584ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( E. x  e.  A  k  e.  B  ->  C  e.  CC ) )
8680, 85syl5bi 208 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
k  e.  U_ x  e.  A  B  ->  C  e.  CC ) )
8786imp 418 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  k  e.  U_ x  e.  A  B )  ->  C  e.  CC )
8879, 87syldan 456 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  k  e.  U_ x  e.  ( z  u.  {
w } ) B )  ->  C  e.  CC )
8962, 66, 76, 88fsumsplit 12212 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  ( sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
90 eqidd 2284 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  (
z  u.  { w } )  =  ( z  u.  { w } ) )
9155sselda 3180 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  x  e.  ( z  u.  { w } ) )  ->  x  e.  A )
9270, 82fsumcl 12206 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  A )  ->  sum_ k  e.  B  C  e.  CC )
9392ralrimiva 2626 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. x  e.  A  sum_ k  e.  B  C  e.  CC )
9493ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  A. x  e.  A  sum_ k  e.  B  C  e.  CC )
9594r19.21bi 2641 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  x  e.  A )  -> 
sum_ k  e.  B  C  e.  CC )
9691, 95syldan 456 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  -.  w  e.  z
)  /\  ( z  u.  { w } ) 
C_  A )  /\  x  e.  ( z  u.  { w } ) )  ->  sum_ k  e.  B  C  e.  CC )
9759, 90, 69, 96fsumsplit 12212 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ x  e.  { w } sum_ k  e.  B  C
) )
98 nfcv 2419 . . . . . . . . . . . . . . . 16  |-  F/_ z sum_ k  e.  B  C
99 nfcv 2419 . . . . . . . . . . . . . . . . 17  |-  F/_ x C
10043, 99nfsum 12164 . . . . . . . . . . . . . . . 16  |-  F/_ x sum_ k  e.  [_  z  /  x ]_ B C
10144sumeq1d 12174 . . . . . . . . . . . . . . . 16  |-  ( x  =  z  ->  sum_ k  e.  B  C  =  sum_ k  e.  [_  z  /  x ]_ B C )
10298, 100, 101cbvsumi 12170 . . . . . . . . . . . . . . 15  |-  sum_ x  e.  { w } sum_ k  e.  B  C  =  sum_ z  e.  {
w } sum_ k  e.  [_  z  /  x ]_ B C
10346snss 3748 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  A  <->  { w }  C_  A )
10456, 103sylibr 203 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  w  e.  A )
105 nfcsb1v 3113 . . . . . . . . . . . . . . . . . . . 20  |-  F/_ x [_ w  /  x ]_ B
106105, 99nfsum 12164 . . . . . . . . . . . . . . . . . . 19  |-  F/_ x sum_ k  e.  [_  w  /  x ]_ B C
107106nfel1 2429 . . . . . . . . . . . . . . . . . 18  |-  F/ x sum_ k  e.  [_  w  /  x ]_ B C  e.  CC
108 csbeq1a 3089 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  w  ->  B  =  [_ w  /  x ]_ B )
109108sumeq1d 12174 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  w  ->  sum_ k  e.  B  C  =  sum_ k  e.  [_  w  /  x ]_ B C )
110109eleq1d 2349 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  w  ->  ( sum_ k  e.  B  C  e.  CC  <->  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )
)
111107, 110rspc 2878 . . . . . . . . . . . . . . . . 17  |-  ( w  e.  A  ->  ( A. x  e.  A  sum_ k  e.  B  C  e.  CC  ->  sum_ k  e. 
[_  w  /  x ]_ B C  e.  CC ) )
112104, 94, 111sylc 56 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )
11347sumeq1d 12174 . . . . . . . . . . . . . . . . 17  |-  ( z  =  w  ->  sum_ k  e.  [_  z  /  x ]_ B C  =  sum_ k  e.  [_  w  /  x ]_ B C )
114113sumsn 12213 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  _V  /\  sum_ k  e.  [_  w  /  x ]_ B C  e.  CC )  ->  sum_ z  e.  { w } sum_ k  e.  [_  z  /  x ]_ B C  =  sum_ k  e. 
[_  w  /  x ]_ B C )
11546, 112, 114sylancr 644 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ z  e.  { w } sum_ k  e.  [_  z  /  x ]_ B C  = 
sum_ k  e.  [_  w  /  x ]_ B C )
116102, 115syl5eq 2327 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ x  e.  { w } sum_ k  e.  B  C  =  sum_ k  e.  [_  w  /  x ]_ B C )
117116oveq2d 5874 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ x  e.  {
w } sum_ k  e.  B  C )  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
11897, 117eqtrd 2315 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  =  ( sum_ x  e.  z  sum_ k  e.  B  C  +  sum_ k  e.  [_  w  /  x ]_ B C ) )
11989, 118eqeq12d 2297 . . . . . . . . . . 11  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( sum_ k  e.  U_  x  e.  ( z  u.  {
w } ) B C  =  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C  <->  (
sum_ k  e.  U_  x  e.  z  B C  +  sum_ k  e. 
[_  w  /  x ]_ B C )  =  ( sum_ x  e.  z 
sum_ k  e.  B  C  +  sum_ k  e. 
[_  w  /  x ]_ B C ) ) )
12041, 119syl5ibr 212 . . . . . . . . . 10  |-  ( ( ( ph  /\  -.  w  e.  z )  /\  ( z  u.  {
w } )  C_  A )  ->  ( sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) )
121120ex 423 . . . . . . . . 9  |-  ( (
ph  /\  -.  w  e.  z )  ->  (
( z  u.  {
w } )  C_  A  ->  ( sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C  ->  sum_ k  e.  U_  x  e.  ( z  u.  {
w } ) B C  =  sum_ x  e.  ( z  u.  {
w } ) sum_ k  e.  B  C
) ) )
122121a2d 23 . . . . . . . 8  |-  ( (
ph  /\  -.  w  e.  z )  ->  (
( ( z  u. 
{ w } ) 
C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )  ->  ( ( z  u. 
{ w } ) 
C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u.  { w } ) sum_ k  e.  B  C )
) )
12340, 122syl5 28 . . . . . . 7  |-  ( (
ph  /\  -.  w  e.  z )  ->  (
( z  C_  A  -> 
sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) )
124123expcom 424 . . . . . 6  |-  ( -.  w  e.  z  -> 
( ph  ->  ( ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C )  ->  (
( z  u.  {
w } )  C_  A  ->  sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) ) )
125124a2d 23 . . . . 5  |-  ( -.  w  e.  z  -> 
( ( ph  ->  ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z 
sum_ k  e.  B  C ) )  -> 
( ph  ->  ( ( z  u.  { w } )  C_  A  -> 
sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) ) )
126125adantl 452 . . . 4  |-  ( ( z  e.  Fin  /\  -.  w  e.  z
)  ->  ( ( ph  ->  ( z  C_  A  ->  sum_ k  e.  U_  x  e.  z  B C  =  sum_ x  e.  z  sum_ k  e.  B  C ) )  -> 
( ph  ->  ( ( z  u.  { w } )  C_  A  -> 
sum_ k  e.  U_  x  e.  ( z  u.  { w } ) B C  =  sum_ x  e.  ( z  u. 
{ w } )
sum_ k  e.  B  C ) ) ) )
12711, 18, 25, 32, 36, 126findcard2s 7099 . . 3  |-  ( A  e.  Fin  ->  ( ph  ->  ( A  C_  A  ->  sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C ) ) )
1282, 127mpcom 32 . 2  |-  ( ph  ->  ( A  C_  A  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C ) )
1291, 128mpi 16 1  |-  ( ph  -> 
sum_ k  e.  U_  x  e.  A  B C  =  sum_ x  e.  A  sum_ k  e.  B  C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   _Vcvv 2788   [_csb 3081    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   {csn 3640   U_ciun 3905  Disj wdisj 3993  (class class class)co 5858   Fincfn 6863   CCcc 8735   0cc0 8737    + caddc 8740   sum_csu 12158
This theorem is referenced by:  hashiun  12280  fsumiunOLD  12281  incexc2  12297  musum  20431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-disj 3994  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159
  Copyright terms: Public domain W3C validator