MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumrelem Unicode version

Theorem fsumrelem 12513
Description: Lemma for fsumre 12514, fsumim 12515, and fsumcj 12516. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1  |-  ( ph  ->  A  e.  Fin )
fsumre.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumrelem.3  |-  F : CC
--> CC
fsumrelem.4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
Assertion
Ref Expression
fsumrelem  |-  ( ph  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) )
Distinct variable groups:    x, k,
y, A    x, B, y    k, F, x, y    ph, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fsumrelem
Dummy variables  f  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0cn 9017 . . . . . . . 8  |-  0  e.  CC
2 fsumrelem.3 . . . . . . . . 9  |-  F : CC
--> CC
32ffvelrni 5808 . . . . . . . 8  |-  ( 0  e.  CC  ->  ( F `  0 )  e.  CC )
41, 3ax-mp 8 . . . . . . 7  |-  ( F `
 0 )  e.  CC
54addid1i 9185 . . . . . 6  |-  ( ( F `  0 )  +  0 )  =  ( F `  0
)
6 oveq1 6027 . . . . . . . . . 10  |-  ( x  =  0  ->  (
x  +  y )  =  ( 0  +  y ) )
76fveq2d 5672 . . . . . . . . 9  |-  ( x  =  0  ->  ( F `  ( x  +  y ) )  =  ( F `  ( 0  +  y ) ) )
8 fveq2 5668 . . . . . . . . . 10  |-  ( x  =  0  ->  ( F `  x )  =  ( F ` 
0 ) )
98oveq1d 6035 . . . . . . . . 9  |-  ( x  =  0  ->  (
( F `  x
)  +  ( F `
 y ) )  =  ( ( F `
 0 )  +  ( F `  y
) ) )
107, 9eqeq12d 2401 . . . . . . . 8  |-  ( x  =  0  ->  (
( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) )  <->  ( F `  ( 0  +  y ) )  =  ( ( F `  0
)  +  ( F `
 y ) ) ) )
11 oveq2 6028 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
0  +  y )  =  ( 0  +  0 ) )
12 00id 9173 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
1311, 12syl6eq 2435 . . . . . . . . . 10  |-  ( y  =  0  ->  (
0  +  y )  =  0 )
1413fveq2d 5672 . . . . . . . . 9  |-  ( y  =  0  ->  ( F `  ( 0  +  y ) )  =  ( F ` 
0 ) )
15 fveq2 5668 . . . . . . . . . 10  |-  ( y  =  0  ->  ( F `  y )  =  ( F ` 
0 ) )
1615oveq2d 6036 . . . . . . . . 9  |-  ( y  =  0  ->  (
( F `  0
)  +  ( F `
 y ) )  =  ( ( F `
 0 )  +  ( F `  0
) ) )
1714, 16eqeq12d 2401 . . . . . . . 8  |-  ( y  =  0  ->  (
( F `  (
0  +  y ) )  =  ( ( F `  0 )  +  ( F `  y ) )  <->  ( F `  0 )  =  ( ( F ` 
0 )  +  ( F `  0 ) ) ) )
18 fsumrelem.4 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
1910, 17, 18vtocl2ga 2962 . . . . . . 7  |-  ( ( 0  e.  CC  /\  0  e.  CC )  ->  ( F `  0
)  =  ( ( F `  0 )  +  ( F ` 
0 ) ) )
201, 1, 19mp2an 654 . . . . . 6  |-  ( F `
 0 )  =  ( ( F ` 
0 )  +  ( F `  0 ) )
215, 20eqtr2i 2408 . . . . 5  |-  ( ( F `  0 )  +  ( F ` 
0 ) )  =  ( ( F ` 
0 )  +  0 )
224, 4, 1addcani 9191 . . . . 5  |-  ( ( ( F `  0
)  +  ( F `
 0 ) )  =  ( ( F `
 0 )  +  0 )  <->  ( F `  0 )  =  0 )
2321, 22mpbi 200 . . . 4  |-  ( F `
 0 )  =  0
24 sumeq1 12410 . . . . . 6  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  =  sum_ k  e.  (/)  B )
25 sum0 12442 . . . . . 6  |-  sum_ k  e.  (/)  B  =  0
2624, 25syl6eq 2435 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  B  = 
0 )
2726fveq2d 5672 . . . 4  |-  ( A  =  (/)  ->  ( F `
 sum_ k  e.  A  B )  =  ( F `  0 ) )
28 sumeq1 12410 . . . . 5  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( F `  B )  =  sum_ k  e.  (/)  ( F `
 B ) )
29 sum0 12442 . . . . 5  |-  sum_ k  e.  (/)  ( F `  B )  =  0
3028, 29syl6eq 2435 . . . 4  |-  ( A  =  (/)  ->  sum_ k  e.  A  ( F `  B )  =  0 )
3123, 27, 303eqtr4a 2445 . . 3  |-  ( A  =  (/)  ->  ( F `
 sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `  B )
)
3231a1i 11 . 2  |-  ( ph  ->  ( A  =  (/)  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) ) )
33 addcl 9005 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
3433adantl 453 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  +  y )  e.  CC )
35 fsumre.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
36 eqid 2387 . . . . . . . . . . . 12  |-  ( k  e.  A  |->  B )  =  ( k  e.  A  |->  B )
3735, 36fmptd 5832 . . . . . . . . . . 11  |-  ( ph  ->  ( k  e.  A  |->  B ) : A --> CC )
3837adantr 452 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  B ) : A --> CC )
39 simprr 734 . . . . . . . . . . 11  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A )
40 f1of 5614 . . . . . . . . . . 11  |-  ( f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  f :
( 1 ... ( # `
 A ) ) --> A )
4139, 40syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  f : ( 1 ... ( # `  A
) ) --> A )
42 fco 5540 . . . . . . . . . 10  |-  ( ( ( k  e.  A  |->  B ) : A --> CC  /\  f : ( 1 ... ( # `  A ) ) --> A )  ->  ( (
k  e.  A  |->  B )  o.  f ) : ( 1 ... ( # `  A
) ) --> CC )
4338, 41, 42syl2anc 643 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
( k  e.  A  |->  B )  o.  f
) : ( 1 ... ( # `  A
) ) --> CC )
4443ffvelrnda 5809 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  x )  e.  CC )
45 simprl 733 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  NN )
46 nnuz 10453 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
4745, 46syl6eleq 2477 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( # `
 A )  e.  ( ZZ>= `  1 )
)
4818adantl 453 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( F `  ( x  +  y ) )  =  ( ( F `  x
)  +  ( F `
 y ) ) )
4941ffvelrnda 5809 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( f `  x
)  e.  A )
50 simpr 448 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  A )  ->  k  e.  A )
5136fvmpt2 5751 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  A  /\  B  e.  CC )  ->  ( ( k  e.  A  |->  B ) `  k )  =  B )
5250, 35, 51syl2anc 643 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  B ) `  k
)  =  B )
5352fveq2d 5672 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  ( (
k  e.  A  |->  B ) `  k ) )  =  ( F `
 B ) )
54 fvex 5682 . . . . . . . . . . . . . 14  |-  ( F `
 B )  e. 
_V
55 eqid 2387 . . . . . . . . . . . . . . 15  |-  ( k  e.  A  |->  ( F `
 B ) )  =  ( k  e.  A  |->  ( F `  B ) )
5655fvmpt2 5751 . . . . . . . . . . . . . 14  |-  ( ( k  e.  A  /\  ( F `  B )  e.  _V )  -> 
( ( k  e.  A  |->  ( F `  B ) ) `  k )  =  ( F `  B ) )
5750, 54, 56sylancl 644 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  (
( k  e.  A  |->  ( F `  B
) ) `  k
)  =  ( F `
 B ) )
5853, 57eqtr4d 2422 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  ( (
k  e.  A  |->  B ) `  k ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  k ) )
5958ralrimiva 2732 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  A  ( F `  ( ( k  e.  A  |->  B ) `  k ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  k ) )
6059ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  ->  A. k  e.  A  ( F `  ( ( k  e.  A  |->  B ) `  k ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  k ) )
61 nfcv 2523 . . . . . . . . . . . . 13  |-  F/_ k F
62 nffvmpt1 5676 . . . . . . . . . . . . 13  |-  F/_ k
( ( k  e.  A  |->  B ) `  ( f `  x
) )
6361, 62nffv 5675 . . . . . . . . . . . 12  |-  F/_ k
( F `  (
( k  e.  A  |->  B ) `  (
f `  x )
) )
64 nffvmpt1 5676 . . . . . . . . . . . 12  |-  F/_ k
( ( k  e.  A  |->  ( F `  B ) ) `  ( f `  x
) )
6563, 64nfeq 2530 . . . . . . . . . . 11  |-  F/ k ( F `  (
( k  e.  A  |->  B ) `  (
f `  x )
) )  =  ( ( k  e.  A  |->  ( F `  B
) ) `  (
f `  x )
)
66 fveq2 5668 . . . . . . . . . . . . 13  |-  ( k  =  ( f `  x )  ->  (
( k  e.  A  |->  B ) `  k
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 x ) ) )
6766fveq2d 5672 . . . . . . . . . . . 12  |-  ( k  =  ( f `  x )  ->  ( F `  ( (
k  e.  A  |->  B ) `  k ) )  =  ( F `
 ( ( k  e.  A  |->  B ) `
 ( f `  x ) ) ) )
68 fveq2 5668 . . . . . . . . . . . 12  |-  ( k  =  ( f `  x )  ->  (
( k  e.  A  |->  ( F `  B
) ) `  k
)  =  ( ( k  e.  A  |->  ( F `  B ) ) `  ( f `
 x ) ) )
6967, 68eqeq12d 2401 . . . . . . . . . . 11  |-  ( k  =  ( f `  x )  ->  (
( F `  (
( k  e.  A  |->  B ) `  k
) )  =  ( ( k  e.  A  |->  ( F `  B
) ) `  k
)  <->  ( F `  ( ( k  e.  A  |->  B ) `  ( f `  x
) ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  ( f `  x
) ) ) )
7065, 69rspc 2989 . . . . . . . . . 10  |-  ( ( f `  x )  e.  A  ->  ( A. k  e.  A  ( F `  ( ( k  e.  A  |->  B ) `  k ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  k )  ->  ( F `  ( ( k  e.  A  |->  B ) `  ( f `  x
) ) )  =  ( ( k  e.  A  |->  ( F `  B ) ) `  ( f `  x
) ) ) )
7149, 60, 70sylc 58 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( F `  (
( k  e.  A  |->  B ) `  (
f `  x )
) )  =  ( ( k  e.  A  |->  ( F `  B
) ) `  (
f `  x )
) )
72 fvco3 5739 . . . . . . . . . . 11  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  x )  =  ( ( k  e.  A  |->  B ) `  (
f `  x )
) )
7341, 72sylan 458 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  B )  o.  f ) `  x )  =  ( ( k  e.  A  |->  B ) `  (
f `  x )
) )
7473fveq2d 5672 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( F `  (
( ( k  e.  A  |->  B )  o.  f ) `  x
) )  =  ( F `  ( ( k  e.  A  |->  B ) `  ( f `
 x ) ) ) )
75 fvco3 5739 . . . . . . . . . 10  |-  ( ( f : ( 1 ... ( # `  A
) ) --> A  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( F `
 B ) )  o.  f ) `  x )  =  ( ( k  e.  A  |->  ( F `  B
) ) `  (
f `  x )
) )
7641, 75sylan 458 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( ( ( k  e.  A  |->  ( F `
 B ) )  o.  f ) `  x )  =  ( ( k  e.  A  |->  ( F `  B
) ) `  (
f `  x )
) )
7771, 74, 763eqtr4d 2429 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  x  e.  ( 1 ... ( # `  A
) ) )  -> 
( F `  (
( ( k  e.  A  |->  B )  o.  f ) `  x
) )  =  ( ( ( k  e.  A  |->  ( F `  B ) )  o.  f ) `  x
) )
7834, 44, 47, 48, 77seqhomo 11297 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( F `  (  seq  1 (  +  , 
( ( k  e.  A  |->  B )  o.  f ) ) `  ( # `  A ) ) )  =  (  seq  1 (  +  ,  ( ( k  e.  A  |->  ( F `
 B ) )  o.  f ) ) `
 ( # `  A
) ) )
79 fveq2 5668 . . . . . . . . 9  |-  ( m  =  ( f `  x )  ->  (
( k  e.  A  |->  B ) `  m
)  =  ( ( k  e.  A  |->  B ) `  ( f `
 x ) ) )
8038ffvelrnda 5809 . . . . . . . . 9  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  B ) `  m )  e.  CC )
8179, 45, 39, 80, 73fsum 12441 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  (  seq  1
(  +  ,  ( ( k  e.  A  |->  B )  o.  f
) ) `  ( # `
 A ) ) )
8281fveq2d 5672 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( F `  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m ) )  =  ( F `  (  seq  1 (  +  ,  ( ( k  e.  A  |->  B )  o.  f ) ) `
 ( # `  A
) ) ) )
83 fveq2 5668 . . . . . . . 8  |-  ( m  =  ( f `  x )  ->  (
( k  e.  A  |->  ( F `  B
) ) `  m
)  =  ( ( k  e.  A  |->  ( F `  B ) ) `  ( f `
 x ) ) )
842ffvelrni 5808 . . . . . . . . . . . 12  |-  ( B  e.  CC  ->  ( F `  B )  e.  CC )
8535, 84syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  B )  e.  CC )
8685, 55fmptd 5832 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  A  |->  ( F `  B
) ) : A --> CC )
8786adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  (
k  e.  A  |->  ( F `  B ) ) : A --> CC )
8887ffvelrnda 5809 . . . . . . . 8  |-  ( ( ( ph  /\  (
( # `  A )  e.  NN  /\  f : ( 1 ... ( # `  A
) ) -1-1-onto-> A ) )  /\  m  e.  A )  ->  ( ( k  e.  A  |->  ( F `  B ) ) `  m )  e.  CC )
8983, 45, 39, 88, 76fsum 12441 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  sum_ m  e.  A  ( (
k  e.  A  |->  ( F `  B ) ) `  m )  =  (  seq  1
(  +  ,  ( ( k  e.  A  |->  ( F `  B
) )  o.  f
) ) `  ( # `
 A ) ) )
9078, 82, 893eqtr4d 2429 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( F `  sum_ m  e.  A  ( ( k  e.  A  |->  B ) `
 m ) )  =  sum_ m  e.  A  ( ( k  e.  A  |->  ( F `  B ) ) `  m ) )
91 sumfc 12430 . . . . . . 7  |-  sum_ m  e.  A  ( (
k  e.  A  |->  B ) `  m )  =  sum_ k  e.  A  B
9291fveq2i 5671 . . . . . 6  |-  ( F `
 sum_ m  e.  A  ( ( k  e.  A  |->  B ) `  m ) )  =  ( F `  sum_ k  e.  A  B
)
93 sumfc 12430 . . . . . 6  |-  sum_ m  e.  A  ( (
k  e.  A  |->  ( F `  B ) ) `  m )  =  sum_ k  e.  A  ( F `  B )
9490, 92, 933eqtr3g 2442 . . . . 5  |-  ( (
ph  /\  ( ( # `
 A )  e.  NN  /\  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A ) )  ->  ( F `  sum_ k  e.  A  B )  = 
sum_ k  e.  A  ( F `  B ) )
9594expr 599 . . . 4  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) ) )
9695exlimdv 1643 . . 3  |-  ( (
ph  /\  ( # `  A
)  e.  NN )  ->  ( E. f 
f : ( 1 ... ( # `  A
) ) -1-1-onto-> A  ->  ( F `  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `  B )
) )
9796expimpd 587 . 2  |-  ( ph  ->  ( ( ( # `  A )  e.  NN  /\ 
E. f  f : ( 1 ... ( # `
 A ) ) -1-1-onto-> A )  ->  ( F `  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `  B )
) )
98 fsumre.1 . . 3  |-  ( ph  ->  A  e.  Fin )
99 fz1f1o 12431 . . 3  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  (
( # `  A )  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
10098, 99syl 16 . 2  |-  ( ph  ->  ( A  =  (/)  \/  ( ( # `  A
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  A ) ) -1-1-onto-> A ) ) )
10132, 97, 100mpjaod 371 1  |-  ( ph  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   A.wral 2649   _Vcvv 2899   (/)c0 3571    e. cmpt 4207    o. ccom 4822   -->wf 5390   -1-1-onto->wf1o 5393   ` cfv 5394  (class class class)co 6020   Fincfn 7045   CCcc 8921   0cc0 8923   1c1 8924    + caddc 8926   NNcn 9932   ZZ>=cuz 10420   ...cfz 10975    seq cseq 11250   #chash 11545   sum_csu 12406
This theorem is referenced by:  fsumre  12514  fsumim  12515  fsumcj  12516
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-inf2 7529  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-fin 7049  df-sup 7381  df-oi 7412  df-card 7759  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-rp 10545  df-fz 10976  df-fzo 11066  df-seq 11251  df-exp 11310  df-hash 11546  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-clim 12209  df-sum 12407
  Copyright terms: Public domain W3C validator